首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8705篇
  免费   802篇
  国内免费   3篇
  2023年   43篇
  2022年   22篇
  2021年   163篇
  2020年   123篇
  2019年   170篇
  2018年   165篇
  2017年   163篇
  2016年   256篇
  2015年   495篇
  2014年   485篇
  2013年   546篇
  2012年   778篇
  2011年   741篇
  2010年   406篇
  2009年   406篇
  2008年   591篇
  2007年   522篇
  2006年   541篇
  2005年   517篇
  2004年   501篇
  2003年   432篇
  2002年   391篇
  2001年   111篇
  2000年   74篇
  1999年   92篇
  1998年   95篇
  1997年   77篇
  1996年   62篇
  1995年   57篇
  1994年   64篇
  1993年   35篇
  1992年   47篇
  1991年   38篇
  1990年   31篇
  1989年   20篇
  1988年   28篇
  1987年   23篇
  1986年   19篇
  1985年   16篇
  1984年   28篇
  1983年   16篇
  1982年   22篇
  1981年   17篇
  1980年   9篇
  1979年   6篇
  1978年   12篇
  1977年   10篇
  1976年   7篇
  1975年   6篇
  1973年   11篇
排序方式: 共有9510条查询结果,搜索用时 109 毫秒
991.
Starving Dictyostelium discoideum cells secrete AcbA, an acyl coenzyme A–binding protein (ACBP) that lacks a conventional signal sequence for entering the endoplasmic reticulum (ER). Secretion of AcbA in D. discoideum requires the Golgi-associated protein GRASP. In this study, we report that starvation-induced secretion of Acb1, the Saccharomyces cerevisiae ACBP orthologue, also requires GRASP (Grh1). This highlights the conserved function of GRASP in unconventional secretion. Although genes required for ER to Golgi or Golgi to cell surface transport are not required for Acb1 secretion in yeast, this process involves autophagy genes and the plasma membrane t-SNARE, Sso1. Inhibiting transport to vacuoles does not affect Acb1 secretion. In sum, our experiments reveal a unique secretory pathway where autophagosomes containing Acb1 evade fusion with the vacuole to prevent cargo degradation. We propose that these autophagosome intermediates fuse with recycling endosomes instead to form multivesicular body carriers that then fuse with the plasma membrane to release cargo.  相似文献   
992.
Colony collapse disorder (CCD), a syndrome whose defining trait is the rapid loss of adult worker honey bees, Apis mellifera L., is thought to be responsible for a minority of the large overwintering losses experienced by U.S. beekeepers since the winter 2006-2007. Using the same data set developed to perform a monofactorial analysis (PloS ONE 4: e6481, 2009), we conducted a classification and regression tree (CART) analysis in an attempt to better understand the relative importance and interrelations among different risk variables in explaining CCD. Fifty-five exploratory variables were used to construct two CART models: one model with and one model without a cost of misclassifying a CCD-diagnosed colony as a non-CCD colony. The resulting model tree that permitted for misclassification had a sensitivity and specificity of 85 and 74%, respectively. Although factors measuring colony stress (e.g., adult bee physiological measures, such as fluctuating asymmetry or mass of head) were important discriminating values, six of the 19 variables having the greatest discriminatory value were pesticide levels in different hive matrices. Notably, coumaphos levels in brood (a miticide commonly used by beekeepers) had the highest discriminatory value and were highest in control (healthy) colonies. Our CART analysis provides evidence that CCD is probably the result of several factors acting in concert, making afflicted colonies more susceptible to disease. This analysis highlights several areas that warrant further attention, including the effect of sublethal pesticide exposure on pathogen prevalence and the role of variability in bee tolerance to pesticides on colony survivorship.  相似文献   
993.
Previously, we demonstrated that sex pheromone production in mated female Heliothis virescens moths is dependent upon hemolymph trehalose concentration (HTC), which is influenced by activities such as the feeding of adults on sucrose. In this paper we demonstrate, for the first time, that this effect also occurs in starved (i.e., sugar-stressed) virgin females. Females allowed to feed on sugar for 6 days, following eclosion, had significantly greater titers than females that had fed only on water (i.e., were starved). No differences in pheromone titer were observed between sugar- and water-fed females at shorter (1 or 3 days) periods following eclosion. The relatively short-term effects of HTC on sex pheromone titer of virgins, were demonstrated by feeding experiments, in which starved (for 4 days) virgins fed on 10% sucrose solution had significantly greater HTC and pheromone titers than ones fed only on water; an increase in HTC was apparent within an hour, while the increase in pheromone titer was apparent within 2.5 h, of sugar feeding. Starvation also showed similar effects on titers of pheromone gland fatty acids (pheromone intermediates) and HTC. Over 6 days of starvation, fatty acid titers and HTC declined gradually. After feeding on sucrose, titers of hexadecanoic, (Z)-9-hexadecanoic, (Z)-11-hexadecanoic and (Z)-9-octadecanoic, acids, as well as HTC, increased significantly 24 h later, but titers of octadecanoic and (Z,Z)-9,12-octadecanoic (linoleic) acids did not. Lepidoptera cannot biosynthesize polyunsaturated acids, but the lack of change in octadecanoic acid titer suggests this acid may not participate in pheromone biosynthesis. In addition to these short-term changes in pheromone and fatty acid production, mediated by HTC, a longer-term effect of age, regardless of HTC, on pheromone titer was observed. Overall, these results are consistent with hemolymph trehalose and glandular fatty acids acting as twin metabolite reservoirs for pheromone biosynthesis. Hemolymph trehalose, able to be refilled through feeding on exogenous sugars, has a one-way flow of metabolites for synthesis of glandular free fatty acids (FFAs) and pheromone, while glandular glycerolipids provide a reversible reservoir for metabolites, accepting surplus FFAs when glandular concentrations are high, and providing FFAs for pheromone biosynthesis when concentrations are low.  相似文献   
994.
The genomes of Vibrio cholerae O1 Matlab variant MJ-1236, Mozambique O1 El Tor variant B33, and altered O1 El Tor CIRS101 were sequenced. All three strains were found to belong to the phylocore group 1 clade of V. cholerae, which includes the 7th-pandemic O1 El Tor and serogroup O139 isolates, despite displaying certain characteristics of the classical biotype. All three strains were found to harbor a hybrid variant of CTXΦ and an integrative conjugative element (ICE), leading to their establishment as successful clinical clones and the displacement of prototypical O1 El Tor. The absence of strain- and group-specific genomic islands, some of which appear to be prophages and phage-like elements, seems to be the most likely factor in the recent establishment of dominance of V. cholerae CIRS101 over the other two hybrid strains.Vibrio cholerae, a bacterium autochthonous to the aquatic environment, is the causative agent of cholera, a life-threatening disease that causes severe, watery diarrhea. Cholera bacteria are serogrouped based on their somatic O antigens, with more than 200 serogroups identified to date (6). Only toxigenic strains of serogroups O1 and O139 have been identified as agents of cholera epidemics and pandemics; serogroups other than O1 and O139 have the potential to cause mild gastroenteritis or, rarely, local outbreaks. Genes coding for cholera toxin (CTX), ctxAB, and other virulence factors have been shown to reside in bacteriophages and various mobile genetic elements. In addition, V. cholerae serogroup O1 is differentiated into two biotypes, classical and El Tor, by a combination of biochemical traits, by sensitivity to biotype-specific bacteriophages, and more recently by nucleotide sequencing of specific genes and by molecular typing (5, 17, 19).There have been seven pandemics of cholera recorded throughout human history. The seventh and current pandemic began in 1961 in the Indonesian island of Sulawesi and subsequently spread to Asia, Africa, and Latin America; the six previous pandemics are believed to have originated in the Indian subcontinent. Isolates of the sixth pandemic were almost exclusively of the O1 classical biotype, whereas the current (seventh) pandemic is dominated by the V. cholerae O1 El Tor biotype as the causative agent, a transition occurring between 1923 and 1961. Today, the disease continues to remain a scourge in developing countries, confounded by the fact that V. cholerae is native to estuaries and river systems throughout the world (8).Over the past 20 years, several new epidemic lineages of V. cholerae O1 El Tor have emerged (or reemerged). For example, in 1992, a new serogroup, namely, O139 of V. cholerae, was identified as the cause of epidemic cholera in India and Bangladesh (25). The initial concern was that a new pandemic was beginning; however, the geographic range of V. cholerae O139 is currently restricted to Asia. Additionally, V. cholerae O1 hybrids and altered El Tor variants have been isolated repeatedly in Bangladesh (Matlab) (23, 24) and Mozambique (1). Altered V. cholerae O1 El Tor isolates produce cholera toxin of the classical biotype but can be biotyped as El Tor by conventional phenotypic assays, whereas V. cholerae O1 hybrid variants cannot be biotyped based on phenotypic tests and can produce cholera toxin of either biotype. These new variants have subsequently replaced the prototype seventh-pandemic V. cholerae O1 El Tor strains in Asia and Africa, with respect to frequency of isolation from clinical cases of cholera (27).Here, we report the genome sequence of three V. cholerae O1 variants, MJ-1236, a Matlab type I hybrid variant from Bangladesh that cannot be biotyped by conventional methods, CIRS101, an altered O1 El Tor isolate from Bangladesh which harbors ctxB of classical origin, and B33, an altered O1 El Tor isolate from Mozambique which harbors classical CTXΦ, and we compare their genomes with prototype El Tor and classical genomes. From an epidemiological viewpoint, among the three variants characterized in this study, V. cholerae CIRS101 is currently the most “successful” in that strains belonging to this type have virtually replaced the prototype El Tor in Asia and many parts of Africa, notably East Africa. This study, therefore, gives us a unique opportunity to understand why V. cholerae CIRS101 is currently the most successful El Tor variant.  相似文献   
995.
Effects of forest management on stream communities have been widely documented, but the role that climate plays in the disturbance outcomes is not understood. In order to determine whether the effect of disturbance from forest management on headwater stream communities varies by climate, we evaluated benthic macroinvertebrate communities in 24 headwater streams that differed in forest management (logged-roaded vs. unlogged-unroaded, hereafter logged and unlogged) within two ecological sub-regions (wet versus dry) within the eastern Cascade Range, Washington, USA. In both ecoregions, total macroinvertebrate density was highest at logged sites (P = 0.001) with gathering-collectors and shredders dominating. Total taxonomic richness and diversity did not differ between ecoregions or forest management types. Shredder densities were positively correlated with total deciduous and Sitka alder (Alnus sinuata) riparian cover. Further, differences in shredder density between logged and unlogged sites were greater in the wet ecoregion (logging × ecoregion interaction; P = 0.006) suggesting that differences in post-logging forest succession between ecoregions were responsible for differences in shredder abundance. Headwater stream benthic community structure was influenced by logging and regional differences in climate. Future development of ecoregional classification models at the subbasin scale, and use of functional metrics in addition to structural metrics, may allow for more accurate assessments of anthropogenic disturbances in mountainous regions where mosaics of localized differences in climate are common.  相似文献   
996.
Several woodland bird species have declined markedly in abundance in England over the past 40 years, whilst the grey squirrel Sciurus carolinensis, a non-native nest predator, has increased. Given the timing, there has been concern that grey squirrels have driven these declines, although there is little data to support this view. Using novel analytical methods and extensive national bird and grey squirrel monitoring data, we examine whether there is evidence that woodland bird populations in England have been depressed by grey squirrels and whether there is a relationship between nest failure and squirrel numbers. Our results indicate that grey squirrels are very unlikely to have driven observed declines of woodland birds in recent years, although the number of associations, positive as well as negative, between grey squirrels and woodland birds is greater than expected by chance. For this reason, we cannot exclude the possibility that the populations of a small number of bird species, principally increasing species, have been depressed to some degree at sites where a greater number of grey squirrels were present. Of these species, perhaps the most convincing evidence is for Common Blackbird Turdus merula and Eurasian Collared Dove Streptopelia decaocto where nest record data also identified a positive relationship between nest failure at the egg stage and squirrel abundance.  相似文献   
997.
Realizing the potential clinical and industrial applications of human embryonic stem cells (hESCs) is limited by the need for costly, labile, or undefined growth substrates. Here we demonstrate that trypsin passaging of the hESC lines, HUES7 and NOTT1, on oxygen plasma etched tissue culture polystyrene (PE‐TCPS) in conditioned medium is compatible with pluripotency. This synthetic culture surface is stable at room temperature for at least a year and is readily prepared by placing polystyrene substrates in a radio frequency oxygen plasma generator for 5 min. Modification of the polystyrene surface chemistry by plasma etching was confirmed by X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS), which identified elemental and molecular changes as a result of the treatment. Pluripotency of hESCs cultured on PE‐TCPS was gauged by consistent proliferation during serial passage, expression of stem cell markers (OCT4, TRA1‐60, and SSEA‐4), stable karyotype and multi‐germlayer differentiation in vitro, including to pharmacologically responsive cardiomyocytes. Generation of cost‐effective, easy‐to‐handle synthetic, defined, stable surfaces for hESC culture will expedite stem cell use in biomedical applications. Biotechnol. Bioeng. 2010;105: 130–140. © 2009 Wiley Periodicals, Inc.  相似文献   
998.
LptC is a conserved bitopic inner membrane protein from Escherichia coli involved in the export of lipopolysaccharide from its site of synthesis in the cytoplasmic membrane to the outer membrane. LptC forms a complex with the ATP-binding cassette transporter, LptBFG, which is thought to facilitate the extraction of lipopolysaccharide from the inner membrane and release it into a translocation pathway that includes the putative periplasmic chaperone LptA. Cysteine modification experiments established that the catalytic domain of LptC is oriented toward the periplasm. The structure of the periplasmic domain is described at a resolution of 2.2-Å from x-ray crystallographic data. The periplasmic domain of LptC consists of a twisted boat structure with two β-sheets in apposition to each other. The β-sheets contain seven and eight antiparallel β-strands, respectively. This structure bears a high degree of resemblance to the crystal structure of LptA. Like LptA, LptC binds lipopolysaccharide in vitro. In vitro, LptA can displace lipopolysaccharide from LptC (but not vice versa), consistent with their locations and their proposed placement in a unidirectional export pathway.  相似文献   
999.
The role of the gastrointestinal tract in maintaining ionic homeostasis during digestion, as well as the relative contribution of the diet for providing electrolytes, has been generally overlooked in many aquatic species. An experimental diet that contained an inert reference marker (lead-glass beads) was used to quantify the net transport of Na(+), K(+), and Cl(-) during the digestion and absorption of a single meal (3% ration) by freshwater rainbow trout (Oncorhynchus mykiss). Secretion of Cl(-) into the stomach peaked at 8 and 12 h following feeding at a rate of 1.1 mmol.kg(-1).h(-1), corresponding to a theoretical pH of 0.6 in the secreted fluid (i.e., 240 mmol/l HCl). The majority ( approximately 90%) of dietary Na(+) and K(+) was absorbed in the stomach, whereas subsequent large fluxes of Na(+) and Cl(-) into the anterior intestine corresponded to a large flux of water previously observed. The estimated concentration of Na(+) in fluids secreted into the anterior intestine was approximately 155 mmol/l, equivalent to reported hepatic bile values, whereas the estimated concentration of Cl(-) ( approximately 285 mmol/l) suggested seepage of HCl acid from the stomach in advance of the chyme front. Net absorption of K(+) in the stomach occurred following the cessation of Cl(-) secretion, providing indirect evidence of K(+) involvement with HCl acid production. Overall, 80-90% of the K(+) and Cl(-) contents of the meal were absorbed on a net basis, whereas net Na(+) absorption was negligible. Chyme-to-plasma ion concentration gradients were often opposed to the direction of ion transport, especially for Na(+) and Cl(-).  相似文献   
1000.
Cytoplasmic free Ca2+ ([Ca2+]cyt) is essential for the contraction and relaxation of blood vessels. The role of plasma membrane Na+/Ca2+ exchange (NCX) activity in the regulation of vascular Ca2+ homeostasis was previously ascribed to the NCX1 protein. However, recent studies suggest that a relatively newly discovered K+-dependent Na+/Ca2+ exchanger, NCKX (gene family SLC24), is also present in vascular smooth muscle. The purpose of the present study was to identify the expression and function of NCKX in arteries. mRNA encoding NCKX3 and NCKX4 was demonstrated by RT-PCR and Northern blot in both rat mesenteric and aortic smooth muscle. NCXK3 and NCKX4 proteins were also demonstrated by immunoblot and immunofluorescence. After voltage-gated Ca2+ channels, store-operated Ca2+ channels, and Na+ pump were pharmacologically blocked, when the extracellular Na+ was replaced with Li+ (0 Na+) to induce reverse mode (Ca2+ entry) activity of Na+/Ca2+ exchangers, a large increase in [Ca2+]cyt signal was observed in primary cultured aortic smooth muscle cells. About one-half of this [Ca2+]cyt signal depended on the extracellular K+. In addition, after the activity of NCX was inhibited by KB-R7943, Na+ replacement-induced Ca2+ entry was absolutely dependent on extracellular K+. In arterial rings denuded of endothelium, a significant fraction of the phenylephrine-induced and nifedipine-resistant aortic or mesenteric contraction could be prevented by removal of extracellular K+. Taken together, these data provide strong evidence for the expression of NCKX proteins in the vascular smooth muscle and their novel role in mediating agonist-stimulated [Ca2+]cyt and thereby vascular tone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号