首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8177篇
  免费   546篇
  国内免费   5篇
  2023年   18篇
  2022年   20篇
  2021年   160篇
  2020年   87篇
  2019年   119篇
  2018年   164篇
  2017年   161篇
  2016年   232篇
  2015年   434篇
  2014年   436篇
  2013年   516篇
  2012年   726篇
  2011年   630篇
  2010年   407篇
  2009年   374篇
  2008年   492篇
  2007年   514篇
  2006年   457篇
  2005年   394篇
  2004年   386篇
  2003年   329篇
  2002年   286篇
  2001年   254篇
  2000年   231篇
  1999年   166篇
  1998年   72篇
  1997年   60篇
  1996年   38篇
  1995年   35篇
  1994年   23篇
  1993年   27篇
  1992年   40篇
  1991年   48篇
  1990年   40篇
  1989年   46篇
  1988年   35篇
  1987年   26篇
  1986年   25篇
  1985年   31篇
  1984年   20篇
  1983年   18篇
  1981年   10篇
  1979年   12篇
  1978年   14篇
  1977年   11篇
  1975年   7篇
  1974年   12篇
  1973年   14篇
  1972年   11篇
  1971年   7篇
排序方式: 共有8728条查询结果,搜索用时 31 毫秒
961.
Photosynthetic organisms exhibit a green color due to the accumulation of chlorophyll pigments in chloroplasts. Mg-protoporphyrin IX chelatase (Mg-chelatase) comprises three subunits (ChlH, ChlD and ChlI) and catalyzes the insertion of Mg2+ into protoporphyrin IX, the last common intermediate precursor in both chlorophyll and heme biosyntheses, to produce Mg-protoporphyrin IX (MgProto). Chlorophyll deficiency in higher plants results in chlorina (yellowish-green) phenotype. To date, 10 chlorina (chl) mutants have been isolated in rice, but the corresponding genes have not yet been identified. Rice Chl1 and Chl9 genes were mapped to chromosome 3 and isolated by map-based cloning. A missense mutation occurred in a highly conserved amino acid of ChlD in the chl1 mutant and ChlI in the chl9 mutant. Ultrastructural analyses have revealed that the grana are poorly stacked, resulting in the underdevelopment of chloroplasts. In the seedlings fed with aminolevulinate-dipyridyl in darkness, MgProto levels in the chl1 and chl9 mutants decreased up to 25% and 31% of that in wild-type, respectively, indicating that the Mg-chelatase activity is significantly reduced, causing the eventual decrease in chlorophyll synthesis. Furthermore, Northern blot analysis indicated that the nuclear genes encoding the three subunits of Mg-chelatase and LhcpII in chl1 mutant are expressed about 2-fold higher than those in WT, but are not altered in the chl9 mutant. This result indicates that the ChlD subunit participates in negative feedback regulation of plastid-to-nucleus in the expression of nuclear genes encoding chloroplast proteins, but not the ChlI subunit.Haitao Zhang and Jinjie Li contributed equally to this work  相似文献   
962.
The optimization of submerged culture conditions for mycelial growth and exopolysaccharide (EPS) production in an edible mushroom Tremella fuciformis was studied in shake flasks and bioreactors. The temperature of 28 degrees C and pH 8 in the beginning of fermentation in agitated flasks was the most efficient condition to obtain maximum mycelial biomass and EPS. The optimal medium constituents were as follows (gL(-1)): glucose 20, tryptone 2, KH(2)PO(4) 0.46, K(2)HPO(4) 1 and MgSO(4).7H(2)O 0.5. The fungus was cultivated under various agitation and aeration conditions in a 5L stirred-tank bioreactor. The maximum cell mass and EPS production were obtained at a relatively high agitation speed of 200 rpm and at an aeration rate of 2 vvm. The flow behavior of the fermentation broth was Newtonian and the maximum apparent viscosity (35 cP) was observed at a highly aerated condition (2 vvm). The EPS productivity in an airlift reactor was higher than that in the stirred-tank reactor. The morphological study revealed that the fungus grows in mainly three different yeast-like forms: ovoid, elongated, and double yeast forms. The high population of the elongated yeast has a very close relationship to high EPS production. The EPS were protein-bound polysaccharides consisted of mainly mannose, xylose, and fucose. The molecular weights of EPS were determined to be (1.3-1.5)x10(6).  相似文献   
963.
This study aimed to monitor the present and future developments of the resistance of Tetranychus urticae Koch to fenpyroximate and pyridaben, using the relationship of the LC50 and slope of the concentration-mortality line in a probit model, for the provision of reliable resistance management tactics. Tetranychus urticae populations were collected from 16 commercial greenhouses, where various crops were cultivated, as well as from 10 apple orchards throughout Korea. The resistance to fenpyroximate and pyridaben of each population was estimated by calculating the median lethal concentration (LC50), resistance ratio (RR) and slope of the concentration-mortality regression. Most of the greenhouse populations exhibited moderate levels of resistance, whereas the apple orchard populations showed only low levels, indicating that T. urticae populations in greenhouses were more strongly selected than those in apple orchards. Four population groups were established based on either the habitats (greenhouse and apple orchard) or acaricides (fenpyroximate and pyridaben). To test the hypothesis, “the slope is greatest at low and high levels of resistance,” the slopes were regressed as a function of the LC50, and fitted to a polynomial regression. The polynomial regression model explained this relationship well for the four population groups (p < 0.05), indicating that the development of resistance toward fenpyroximate or pyridaben was consistent with the gradient. A laboratory selection study agreed with the results from both acaricide field populations. These results suggest that the gradient was a good indicator of the susceptibility of T. urticae to genetic variations, which was related to the LC50. The application of these findings is also discussed in relation to the resistance management of T. urticae.  相似文献   
964.
A bacterial strain Paenibacillus polymyxa GS01 was isolated from the interior of the roots of Korean cultivars of ginseng (Panax ginseng C. A. Meyer). The cel44C-man26A gene was cloned from this endophytic strain. This 4,056-bp gene encodes for a 1,352-aa protein which, based on BLAST search homologies, contains a glycosyl hydrolase family 44 (GH44) catalytic domain, a fibronectin domain type 3, a glycosyl hydrolase family 26 (GH26) catalytic domain, and a cellulose-binding module type 3. The multifunctional enzyme domain GH44 possesses cellulase, xylanase, and lichenase activities, while the enzyme domain GH26 possesses mannanase activity. The Cel44C enzyme expressed in and purified from Escherichia coli has an optimum pH of 7.0 for cellulase and lichenase activities, but is at an optimum pH of 5.0 for xylanase and mannanase activities. The optimum temperature for enzymatic activity was 50°C for all substrates. No detectable enzymatic activity was detected for the Cel44C-Man26A mutants E91A and E222A. These results suggest that the amino acid residues Glu91 and Glu222 may play an important role in the glycosyl hydrolases activity of Cel44C-Man26A.  相似文献   
965.
Mice with liver-specific overexpression of dominant negative phosphorylation-defective S503A-CEACAM1 mutant (L-SACC1) developed chronic hyperinsulinemia resulting from blunted hepatic clearance of insulin, visceral obesity, and glucose intolerance. To determine the underlying mechanism of altered glucose homeostasis, a 2-h hyperinsulinemic euglycemic clamp was performed, and tissue-specific glucose and lipid metabolism was assessed in awake L-SACC1 and wild-type mice. Inactivation of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) caused insulin resistance in liver that was mostly due to increased expression of fatty acid synthase and lipid metabolism, resulting in elevated intrahepatic levels of triglyceride and long-chain acyl-CoAs. Whole body insulin resistance in the L-SACC1 mice was further attributed to defects in insulin-stimulated glucose uptake in skeletal muscle and adipose tissue. Insulin resistance in peripheral tissues was associated with significantly elevated intramuscular fat contents that may be secondary to increased whole body adiposity (assessed by (1)H-MRS) in the L-SACC1 mice. Overall, these results demonstrate that L-SACC1 is a mouse model in which chronic hyperinsulinemia acts as a cause, and not a consequence, of insulin resistance. Our findings further indicate the important role of CEACAM1 and hepatic insulin clearance in the pathogenesis of obesity and insulin resistance.  相似文献   
966.
This study investigated exertion-dependent motor overflow among healthy adults when they performed isometric tasks with contralateral joints in different task directions. Twenty healthy adults (10 males and 10 females, mean age = 26.2 yrs) were instructed to complete a set of isometric contractions of various force vectors with the shoulder, elbow, and wrist joints, in a total of ten motor tasks at submaximal and maximal intensities (50%, 100% maximal voluntary contractions). The electromyographical activities from eight muscles of the unexercised upper limb were recorded to characterize intensity of motor overflow during sustained isometric contraction. Both occurrence frequency and magnitude of motor overflow in terms of standardized net excitation (SNE) increased with exertion level for all joint movements (P < 0.001). Additionally, the motor overflow magnitude depended strongly on the task direction of maximal isometric contraction (P < 0.05). Motor overflow was particularly augmented by the contralateral isometric contractions where task directions were opposed to gravity. However, such a directional effect upon SNE was not evident during submaximal contraction (P > 0.05). The difference of the net excitation between maximal and submaximal contraction (DNE(100%-50%MVC) data) indicated that the pectoralis major and triceps brachii consistently exhibited a marked recruitment in reaction to change in task direction of isometric contraction. Patterned motor overflow may be physiologically relevant to topological mapping of the ipsilateral pathways and altered effectiveness of use-dependent interhemispherical connectivity. The current observations provide better insight into gain in muscle strength due to contralateral exercise.  相似文献   
967.
Although the hepatitis B virus X protein (HBx) is thought to play a causative role in the development of hepatocellular carcinoma, it is not yet known whether interfering with HBx function may affect the cellular transformation of HBx-expressing tumor cells. To address this question, we adopted an intracellular antibody fragment expression approach to block the function of HBx. Expression of a single-chain variable fragment (scFv) specific to HBx (designated as H7scFv) inhibited HBx-dependent cellular transactivation. Furthermore, H7scFv suppressed the growth of HBx-expressing tumor cells in both soft agar and nude mice. The suppressive effect of H7scFv on tumorigenicity appeared not to be mediated by inhibition of HBx-induced growth stimulation since the growth rate of these cells was not affected significantly by H7scFv expression. In conclusion, these data suggest that the HBx-dependent transformed phenotype is reversible and that HBx may be a good molecular target for the treatment of HBV-related tumors.This study was supported by a grant of the Korea Health 21 R&D Project, Ministry of Health& Welfare, Republic of Korea (03-PJ1-PG3-20200–0023)  相似文献   
968.
Shin YK  Yum H  Kim ES  Cho H  Gothandam KM  Hyun J  Chung YY 《Planta》2006,224(1):32-41
Xyloglucan endotransglucosylase/hydrolases (XTHs) are a group of the enzymes that are responsible for reorganization of the cellulose–xyloglucan framework by catalyzing cleavage and religation of the xyloglucan chains in the plant cell wall. In this study, we report the isolation and characterization of a XTH gene from a pistil cDNA library of Brassica campestris. Sequence analysis of the gene, designated BcXTH1, revealed that it is homologous to the XTH9 gene of Arabidopsis. The highly conserved domain (DEIDFEFLG) found among all XTHs was also present in BcXTH1 but with the two amino acid substitutions (NEFDFEFLG) also found in Arabidopsis XTH9. These results suggest that BcXTH1 is the B. campestris homologue of XTH9. Expression analysis of BcXTH1 revealed that it was expressed in most of the plant organs. In situ hybridization showed that the gene is highly expressed in the floral primodia, especially in the epidermal cell layer. Southern blot analysis indicated that the BcXTH1 gene exists as a multi-copy gene in the B. campestris genome. The function of the BcXTH1 gene was deduced from using an overexpression strategy in Arabidopsis. Interestingly, the transgenic plants showed a pronounced cell expansion phenotype. Immunoelectron microscopy shows that BcXTH1 is localized almost exclusively to the cell wall, supporting our conclusion that it participates in the regulation of cell expansion in B. campestris.  相似文献   
969.
Han J  Lee Y  Yeom KH  Nam JW  Heo I  Rhee JK  Sohn SY  Cho Y  Zhang BT  Kim VN 《Cell》2006,125(5):887-901
  相似文献   
970.
Global gene expression was compared between the Nitrosomonas europaea wild type and a nitrite reductase-deficient mutant using a genomic microarray. Forty-one genes were differentially regulated between the wild type and the nirK mutant, including the nirK operon, genes for cytochrome c oxidase, and seven iron uptake genes. Relationships of differentially regulated genes to the nirK mutant phenotype are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号