首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   10篇
  国内免费   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   9篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   8篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1971年   1篇
排序方式: 共有107条查询结果,搜索用时 418 毫秒
11.
We report the presence, in the mitochondrial DNA (mtDNA) of all of the sexual species of the salamander family Ambystomatidae, of a shared 240- bp intergenic spacer between tRNAThr and tRNAPro. We place the intergenic spacer in context by presenting the sequence of 1,746 bp of mtDNA from Ambystoma tigrinum tigrinum, describe the nucleotide composition of the intergenic spacer in all of the species of Ambystomatidae, and compare it to other coding and noncoding regions of Ambystoma and several other vertebrate mtDNAs. The nucleotide substitution rate of the intergenic spacer is approximately three times faster than the substitution rate of the control region, as shown by comparisons among six Ambystoma macrodactylum sequences and eight members of the Ambystoma tigrinum complex. We also found additional inserts within the intergenic spacers of five species that varied from 87-444 bp in length. The presence of the intergenic spacer in all sexual species of Ambystomatidae suggests that it arose at least 20 MYA and has been a stable component of the ambystomatid mtDNA ever since. As such, it represents one of the few examples of a large and persistent intergenic spacer in the mtDNA of any vertebrate clade.   相似文献   
12.
13.
Mammalian aldehyde dehydrogenase 7A1 (ALDH7A1) is homologous to plant ALDH7B1 which protects against various forms of stress such as increased salinity, dehydration and treatment with oxidants or pesticides. Deleterious mutations in human ALDH7A1 are responsible for pyridoxine-dependent and folinic acid-responsive seizures. In previous studies, we have shown that human ALDH7A1 protects against hyperosmotic stress presumably through the generation of betaine, an important cellular osmolyte, formed from betaine aldehyde. Hyperosmotic stress is coupled to an increase in oxidative stress and lipid peroxidation (LPO). In this study, cell viability assays revealed that stable expression of mitochondrial ALDH7A1 in Chinese hamster ovary (CHO) cells provides significant protection against treatment with the LPO-derived aldehydes hexanal and 4-hydroxy-2-nonenal (4HNE) implicating a protective function for the enzyme during oxidative stress. A significant increase in cell survival was also observed in CHO cells expressing either mitochondrial or cytosolic ALDH7A1 treated with increasing concentrations of hydrogen peroxide (H(2)O(2)) or 4HNE, providing further evidence for anti-oxidant activity. In vitro enzyme activity assays indicate that human ALDH7A1 is sensitive to oxidation and that efficiency can be at least partially restored by incubating recombinant protein with the thiol reducing agent β-mercaptoethanol (BME). We also show that after reactivation with BME, recombinant ALDH7A1 is capable of metabolizing the reactive aldehyde 4HNE. In conclusion, ALDH7A1 mechanistically appears to provide cells protection through multiple pathways including the removal of toxic LPO-derived aldehydes in addition to osmolyte generation.  相似文献   
14.
Aberrant mucin O-glycosylation often occurs in different cancers and is characterized by immature expression of simple mucin-type carbohydrates. At present, there are some controversial reports about the Tn antigen (GalNAcα-O-Ser/Thr) expression and there is a great lack of information about the [UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase (GalNAc-Ts)] expression in chronic lymphocytic leukemia (CLL). To gain insight in these issues we evaluated the Tn antigen expression in CLL patient samples using two Tn binding proteins with different fine specificity. We also studied the expression from 14 GalNAc-Ts genes in CLL patients by RT-PCR. Our results have provided additional information about the expression level of the Tn antigen, suggesting that a low density of Tn residues is expressed in CLL cells. We also found that GALNT11 was expressed in CLL cells and normal T cell whereas little or no expression was found in normal B cells. Based on these results, GALNT11 expression was assessed by qPCR in a cohort of 50 CLL patients. We found significant over-expression of GALNT11 in 96% of B–CLL cells when compared to normal B cells. Moreover, we confirmed the expression of this enzyme at the protein level. Finally we found that GALNT11 expression was significantly associated with the mutational status of the immunoglobulin heavy chain variable region (IGHV), [?2(1) = 18.26; P < 0.0001], lipoprotein lipase expression [?2(1) = 13.72; P = 0.0002] and disease prognosis [?2(1) = 15.49; P < 0.0001]. Our evidence suggests that CLL patient samples harbor aberrant O-glycosylation highlighted by Tn antigen expression and that the over-expression of GALNT11 constitutes a new molecular marker for CLL.  相似文献   
15.
The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause of CIMP in colorectal cancer. The IDH1 mutational hotspot was screened in 86 CIMP-positive and 80 CIMP-negative cancers. The entire coding sequence was examined in 81 CIMP-positive colorectal cancers. Forty-seven cancers varying by CIMP-status and IDH1 mutation status were examined using Illumina 450K DNA methylation microarrays. The R132C IDH1 mutation was detected in 4/166 cancers. All IDH1 mutations were in CIMP cancers that were BRAF mutant and microsatellite stable (4/45, 8.9%). Unsupervised hierarchical cluster analysis identified an IDH1 mutation-like methylation signature in approximately half of the CIMP-positive cancers. IDH1 mutation appears to cause CIMP in a small proportion of BRAF mutant, microsatellite stable colorectal cancers. This study provides a precedent that a single gene mutation may cause CIMP in colorectal cancer, and that this will be associated with a specific epigenetic signature and clinicopathological features.  相似文献   
16.
We have determined the complete nucleotide sequence of the small- subunit ribosomal RNA genes for the ciliate protozoans Stylonychia pustulata and Oxytricha nova. The sequences are homologous and sufficiently similar that these organisms must be closely related. In a phylogeny inferred from comparisons of several eukaryotic small-subunit ribosomal RNAs, the divergence of the ciliates from the eukaryotic line of descent is seen to coincide with the radiation of the plants, the animals, and the fungi. This radiation is preceded by the divergence of the slime mold, Dictyostelium discoideum.   相似文献   
17.
The ref(2)P locus (2-54.2) is polymorphic for two allelic forms in natural populations of Drosophila melanogaster, ref(2)Po and ref(2)Pp. The latter allele confers resistance to the rhabdovirus sigma infecting wild populations. Previous work, based on a small sample of prescreened restrictive (resistant) and permissive (susceptible) alleles, identified a large number of amino acid replacement changes (7) relative to synonymous changes (1). Such protein variability could be the result of variation-enhancing selection. To further test the selection hypothesis, we have examined the DNA sequences of ten randomly chosen lines of D. melanogaster and one line of D. simulans. Nine of the ten lines are permissive; D. simulans does not harbor the virus. The melanogaster alleles contain 4 synonymous changes, 19 noncoding changes, and 13 amino acid replacement changes, indicating a relatively high level of polymorphism. Three sequenced restrictive alleles have nearly identical sequences, indicating that they are relatively young. Compared to the permissive alleles, they share only a complex deletion at codon 34, CAG-AAT to GGA, which our analysis indicates to be the site conferring the restrictive phenotype. Patterns of polymorphism and divergence differ from neutral predictions by several criteria for the amino terminal region, which contains the complex deletion (codons 1-91), but not the remainder of the protein (codons 92-599). We find a higher rate of evolution on the D. melanogaster lineage than on the D. simulans lineage. The relatively large amount of both replacement and silent polymorphism in the permissive alleles and the lack of divergence between permissive and restrictive alleles suggests that the sigma virus and ref(2)P may be engaged in an evolutionary race in which new restrictive alleles are continually arising but are relatively short-lived.   相似文献   
18.
The zebrafish genome contains at least five msx homeobox genes, msxA, msxB, msxC, msxD, and the newly isolated msxE. Although these genes share structural features common to all Msx genes, phylogenetic analyses of protein sequences indicate that the msx genes from zebrafish are not orthologous to the Msx1 and Msx2 genes of mammals, birds, and amphibians. The zebrafish msxB and msxC are more closely related to each other and to the mouse Msx3. Similarly, although the combinatorial expression of the zebrafish msx genes in the embryonic dorsal neuroectoderm, visceral arches, fins, and sensory organs suggests functional similarities with the Msx genes of other vertebrates, differences in the expression patterns preclude precise assignment of orthological relationships. Distinct duplication events may have given rise to the msx genes of modern fish and other vertebrate lineages whereas many aspects of msx gene functions during embryonic development have been preserved.   相似文献   
19.
20.
Homologous recombination (HR) is a key pathway that repairs DNA double‐strand breaks (DSBs) and helps to restart stalled or collapsed replication forks. How HR supports replication upon genotoxic stress is not understood. Using in vivo and in vitro approaches, we show that the MMS22L–TONSL heterodimer localizes to replication forks under unperturbed conditions and its recruitment is increased during replication stress in human cells. MMS22L–TONSL associates with replication protein A (RPA)‐coated ssDNA, and the MMS22L subunit directly interacts with the strand exchange protein RAD51. MMS22L is required for proper RAD51 assembly at DNA damage sites in vivo, and HR‐mediated repair of stalled forks is abrogated in cells expressing a MMS22L mutant deficient in RAD51 interaction. Similar to the recombination mediator BRCA2, recombinant MMS22L–TONSL limits the assembly of RAD51 on dsDNA, which stimulates RAD51‐ssDNA nucleoprotein filament formation and RAD51‐dependent strand exchange activity in vitro. Thus, by specifically regulating RAD51 activity at uncoupled replication forks, MMS22L–TONSL stabilizes perturbed replication forks by promoting replication fork reversal and stimulating their HR‐mediated restart in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号