首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   430篇
  免费   36篇
  2024年   1篇
  2023年   7篇
  2022年   4篇
  2021年   17篇
  2020年   15篇
  2019年   16篇
  2018年   14篇
  2017年   16篇
  2016年   17篇
  2015年   39篇
  2014年   32篇
  2013年   38篇
  2012年   37篇
  2011年   43篇
  2010年   21篇
  2009年   22篇
  2008年   15篇
  2007年   21篇
  2006年   12篇
  2005年   14篇
  2004年   14篇
  2003年   15篇
  2002年   6篇
  2001年   8篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有466条查询结果,搜索用时 15 毫秒
21.
Kaposi's sarcoma (KS), the most frequent malignancy afflicting AIDS patients, is characterized by spindle cell formation and vascularization. Infection with KS-associated herpesvirus (KSHV) is consistently observed in all forms of KS. Spindle cell formation can be replicated in vitro by infection of dermal microvascular endothelial cells (DMVEC) with KSHV. To study the molecular mechanism of this transformation, we compared RNA expression profiles of KSHV-infected and mock-infected DMVEC. Induction of several proto-oncogenes was observed, particularly the receptor tyrosine kinase c-kit. Consistent with increased c-Kit expression, KHSV-infected DMVEC displayed enhanced proliferation in response to the c-Kit ligand, stem cell factor (SCF). Inhibition of c-Kit activity with either a pharmacological inhibitor of c-Kit (STI 571) or a dominant-negative c-Kit protein reversed SCF-dependent proliferation. Importantly, inhibition of c-Kit signal transduction reversed the KSHV-induced morphological transformation of DMVEC. Furthermore, overexpression studies showed that c-Kit was sufficient to induce spindle cell formation. Together, these data demonstrate an essential role for c-Kit in KS tumorigenesis and reveal a target for pharmacological intervention.  相似文献   
22.
Functional genomics in virology and antiviral drug discovery   总被引:3,自引:0,他引:3  
  相似文献   
23.
Reactive oxygen species and oxidative stress are involved in quinolinic acid (QUIN)-induced neurotoxicity. QUIN, a N-methyl-D-aspartate receptor (NMDAr) agonist and prooxidant molecule, produces NMDAr overactivation, excitotoxic events, and direct reactive oxygen species formation. Copper is an essential metal exhibiting both modulatory effects on neuronal excitatory activity and antioxidant properties. To investigate whether this metal is able to counteract the neurotoxic and oxidative actions of QUIN, we administered copper (as CuSO(4)) intraperitoneally to rats (2.5, 5.0, 7.5, and 10.0 mg/kg) 30 min before the striatal infusion of 1 microliter of QUIN (240 nmol). A 5.0 mg/kg CuSO(4) dose significantly increased the copper content in the striatum, reduced the neurotoxicity measured both as circling behavior and striatal gamma-aminobutyric acid (GABA) depletion, and blocked the oxidative injury evaluated as striatal lipid peroxidation (LP). In addition, copper reduced the QUIN-induced decreased striatal activity of Cu,Zn-dependent superoxide dismutase, and increased the ferroxidase activity of ceruloplasmin in cerebrospinal fluid from QUIN-treated rats. However, copper also produced significant increases of plasma lactate dehydrogenase activity and mortality at the highest doses employed (7.5 and 10.0 mg/kg). These results show that at low doses, copper exerts a protective effect on in vivo QUIN neurotoxicity.  相似文献   
24.
EGb761 has been suggested to be an antioxidant and free radical scavenger. Excess generation of free radicals, leading to lipid peroxidation (LP), has been proposed to play a role in the damage to striatal neurons induced by 1-methyl-4-phenylpyridinium (MPP+). We investigated the effects of EGb761 pretreatment on MPP+ neurotoxicity. C-57 black mice were pretreated with EGb761 for 17 days at different doses (0.63, 1.25, 2.5, 5 or 10 mg/kg) followed by administration of MPP+, (0.18, 0.36 or 0.72 mg/kg). LP was analyzed in corpus striatum at 30 min, 1 h, 2 h and 24 h after MPP+ administration. Striatal dopamine content was analyzed by HPLC at the highest EGb761 dose at 2 h and 24 h after MPP+ administration. MPP+-induced LP was blocked (100%) by EGb761 (10 mg/kg). Pretreatment with EGb761 partially prevented (32%) the dopamine-depleting effect of MPP+ at 24 h. These results suggest that supplements of EGb761 may be effective at preventing MPP+-induced oxidative stress.  相似文献   
25.
We examined the activity of striatal superoxide dismutase (SOD) in two acute pharmacological models of Huntington's disease (HD), and compared it with SOD activity in the striata of mice transgenic for the HD mutation. Total SOD, and Cu/ZnSOD activities increased in young transgenic mice, but decreased in older (35 week) mice. We consider that the increased enzyme activity represents a compensatory mechanism to protect cells from free radical-induced damage, but the system becomes insufficient in older animals. Major decreases in SOD activity were also observed both after quinolinic acid and 3-nitropropionic acid intrastriatal injections. The present results indicate that in both types of HD models striatal oxidative damage occurs, and that it is associated with alterations in the cellular antioxidant system.  相似文献   
26.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a drug that induces parkinsonism in humans and non-human primates. Free radicals are thought to be involved in its mechanism of action. Recently, metallothionein has been proposed to play a role as a scavenger of free radicals. In the present work, we studied the effect of MPTP neurotoxicity on brain metallothionein-I (MT-I) mRNA expression. Male C-57 black mice were treated with MPTP (30 mg/kg, i.p., daily) for 3 or 5 days. All animals were killed by cervical dislocation 7 days after the last MPTP dose. The brains were removed quickly and immediately frozen, and quantitative in situ hybridization was performed using MT-I cDNA probe. MT-I mRNA content in striatum, a region which is known to be highly predisposed and sensitive to MPTP-induced oxidative stress, decreased by 30% (3 days) and 39% (5 days) respectively, after the last MPTP administration. These results suggest that MT-I gene expression is decreased in MPTP neurotoxicity. It is suggested that the reduction of MT, an anti-oxidant and a free radical scavenger, in the striatum by MPTP enables the neurotoxin to exert maximal oxidative damage to the striatum.  相似文献   
27.
We have used a transgenic cell line of Catharanthus roseus (L.) G. Don to study the relative importance of the supply of biosynthetic precursors for the synthesis of terpenoid indole alkaloids. Line S10 carries a recombinant, constitutively overexpressed version of the endogenous strictosidine synthase (Str) gene. Various concentrations and combinations of the substrate tryptamine and of loganin, the immediate precursor of secologanin, were added to suspension cultures of S10. Our results indicate that high rates of tryptamine synthesis can take place under conditions of low tryptophan decarboxylase activity, and that high rates of strictosidine synthesis are possible in the presence of a small tryptamine pool. It appears that the utilization of tryptamine for alkaloid biosynthesis enhances metabolic flux through the indole pathway. However, a deficiency in the supply of either the iridoid or the indole precursor can limit flux through the step catalyzed by strictosidine synthase. Precursor utilization for the synthesis of strictosidine depends on the availability of the cosubstrate; the relative abundance of these precursors is a cell-line-specific trait that reflects the metabolic status of the cultures.  相似文献   
28.
Cells of Catharanthus roseus (L.) G. Don were genetically engineered to over-express the enzymes strictosidine synthase (STR; EC 4.3.3.2) and tryptophan decarboxylase (TDC; EC 4.1.1.28), which catalyze key steps in the biosynthesis of terpenoid indole alkaloids (TIAs). The cultures established after Agrobacterium-mediated transformation showed wide phenotypic diversity, reflecting the complexity of the biosynthetic pathway. Cultures transgenic for Str consistently showed tenfold higher STR activity than wild-type cultures, which favored biosynthetic activity through the pathway. Two such lines accumulated over 200 mg · L−1 of the glucoalkaloid strictosidine and/or strictosidine-derived TIAs, including ajmalicine, catharanthine, serpentine, and tabersonine, while maintaining wild-type levels of TDC activity. Alkaloid accumulation by highly productive transgenic lines showed considerable instability and was strongly influenced by culture conditions, such as the hormonal composition of the medium and the availability of precursors. High transgene-encoded TDC activity was not only unnecessary for increased productivity, but also detrimental to the normal growth of the cultures. In contrast, high STR activity was tolerated by the cultures and appeared to be necessary, albeit not sufficient, to sustain high rates of alkaloid biosynthesis. We conclude that constitutive over-expression of Str is highly desirable for increased TIA production. However, given its complexity, limited intervention in the TIA pathway will yield positive results only in the presence of a favorable epigenetic environment. Received: 12 June 1997 / Accepted: 24 October 1997  相似文献   
29.
Inflammation is a critical contributor to the pathogenesis of metabolic disorders with adipose tissue being crucial in the inflammatory response by releasing multiple adipokines with either pro- or anti-inflammatory activities with potential functions as metabolic regulators. Peripheral blood mononuclear cells (PBMC) have been proposed as representative of the inflammatory status in obesity. The aim of the present study was to evaluate the contribution of PBMC to the obesity-associated chronic inflammation analyzing the expression of novel adipokines. Samples obtained from 69 subjects were used in the study. Real-time PCR determinations were performed to quantify gene expression levels in PBMC of novel adipokines including chemerin, chitinase-3-like protein 1 (YKL-40), lipocalin-2 (LCN-2) and osteopontin (OPN), and their circulating concentrations were also determined by ELISA. We show, for the first time, that PBMC gene expression levels of chemerin (P < 0.0001), chitinase-3-like protein 1 (P = 0.010), lipocalin-2 (P < 0.0001) and osteopontin (P < 0.0001) were strongly upregulated in obesity independently of the glycemic state. Circulating concentrations of these adipokines followed the same trend being significantly higher (P < 0.05) in obese normoglycemic and type 2 diabetic patients compared to lean volunteers and also associated (P < 0.05) with their corresponding mRNA levels in PBMC. These results provide evidence that alterations in inflammation-related adipokines are manifest in PBMC, which might contribute to the low-grade chronic inflammation that characterizes obesity.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-015-0460-8) contains supplementary material, which is available to authorized users.  相似文献   
30.
The cystine-glutamate antiporter (system xc -) is a Na+-independent amino acid transporter that exchanges extracellular cystine for intracellular glutamate. It is thought to play a critical role in cellular redox processes through regulation of intracellular glutathione synthesis via cystine uptake. In gliomas, system xc - expression is universally up-regulated while that of glutamate transporters down-regulated, leading to a progressive accumulation of extracellular glutamate and excitotoxic cell death of the surrounding non-tumorous tissue. Additionally, up-regulation of system xc - in activated microglia has been implicated in the pathogenesis of several neurodegenerative disorders mediated by excess glutamate. Consequently, system xc - is a new drug target for brain cancer and neuroinflammatory diseases associated with excess extracellular glutamate. Unfortunately no potent and selective small molecule system xc - inhibitors exist and to our knowledge, no high throughput screening (HTS) assay has been developed to identify new scaffolds for inhibitor design. To develop such an assay, various neuronal and non-neuronal human cells were evaluated as sources of system xc -. Human glioma cells were chosen based on their high system xc - activity. Using these cells, [14C]-cystine uptake and cystine-induced glutamate release assays were characterized and optimized with respect to cystine and protein concentrations and time of incubation. A pilot screen of the LOPAC/NINDS libraries using glutamate release demonstrated that the logistics of the assay were in place but unfortunately, did not yield meaningful pharmacophores. A larger, HTS campaign using the 384-well cystine-induced glutamate release as primary assay and the 96-well 14C-cystine uptake as confirmatory assay is currently underway. Unexpectedly, we observed that the rate of cystine uptake was significantly faster than the rate of glutamate release in human glioma cells. This was in contrast to the same rates of cystine uptake and glutamate release previously reported in normal human fibroblast cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号