首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
  2019年   1篇
  2016年   2篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
21.
22.
23.
Metabolomics - The identification of frequent acquired mutations shows that patients with oligodendrogliomas have divergent biology with differing prognoses regardless of histological...  相似文献   
24.
The proton-translocating NADH:ubiquinone oxidoreductase of respiratory chains (complex I) contains one flavin mononucleotide and five EPR-detectable iron-sulfur clusters as redox groups. Because of the number of conserved motifs typical for binding iron-sulfur clusters and the high content of iron and acid-labile sulfide of complex I preparations, it is predicted that complex I contains additional clusters which have not yet been detected by EPR spectroscopy. To search for such clusters, we used a combination of UV/vis and EPR spectroscopy to study complex I from Neurospora crassa and Escherichia coli adjusted to distinct redox states. We detected a UV/vis redox difference spectrum characterized by negative absorbances at 325 and 425 nm that could not be assigned to the known redox groups. Redox titration was used to determine the pH-independent midpoint potential to be -270 mV, being associated with the transfer of two electrons. Comparison with UV/vis difference spectra obtained from complex I fragments and related enzymes showed that this group is localized on subunit Nuo21.3c of the N. crassa or NuoI of the E. coli complex I, respectively. This subunit (the bovine TYKY) belongs to a family of 8Fe-ferredoxins which contain two tetranuclear iron-sulfur clusters as redox groups. We detected EPR signals in a fragment of complex I which we attribute to the novel FeS clusters of complex I.  相似文献   
25.
The proton-pumping NADH:ubiquinone oxidoreductase is the first of the respiratory chain complexes in many bacteria and mitochondria of most eukaryotes. The bacterial complex consists of 14 different subunits. Seven peripheral subunits bear all known redox groups of complex I, namely one FMN and five EPR-detectable iron-sulfur (FeS) clusters. The remaining seven subunits are hydrophobic proteins predicted to fold into 54 alpha-helices across the membrane. Little is known about their function, but they are most likely involved in proton translocation. The mitochondrial complex contains in addition to the homologues of these 14 subunits at least 29 additional proteins that do not directly participate in electron transfer and proton translocation. A novel redox group has been detected in the Neurospora crassa complex, in an amphipathic fragment of the Escherichia coli complex I and in a related hydrogenase and ferredoxin by means of UV/Vis spectroscopy. This group is made up by the two tetranuclear FeS clusters located on NuoI (the bovine TYKY) which have not been detected by EPR spectroscopy yet. Furthermore, we present evidence for the existence of a novel redox group located in the membrane arm of the complex. Partly reduced complex I equilibrated to a redox potential of -150 mV gives a UV/Vis redox difference spectrum that cannot be attributed to the known cofactors. Electrochemical titration of this absorption reveals a midpoint potential of -80 mV. This group is believed to transfer electrons from the high potential FeS cluster to ubiquinone.  相似文献   
26.

Background

Gene copy number divergence between species is a form of genetic polymorphism that contributes significantly to both genome size and phenotypic variation. In plants, copy number expansions of single genes were implicated in cultivar- or species-specific tolerance of high levels of soil boron, aluminium or calamine-type heavy metals, respectively. Arabidopsis halleri is a zinc- and cadmium-hyperaccumulating extremophile species capable of growing on heavy-metal contaminated, toxic soils. In contrast, its non-accumulating sister species A. lyrata and the closely related reference model species A. thaliana exhibit merely basal metal tolerance.

Results

For a genome-wide assessment of the role of copy number divergence (CND) in lineage-specific environmental adaptation, we conducted cross-species array comparative genome hybridizations of three plant species and developed a global signal scaling procedure to adjust for sequence divergence. In A. halleri, transition metal homeostasis functions are enriched twofold among the genes detected as copy number expanded. Moreover, biotic stress functions including mostly disease Resistance (R) gene-related genes are enriched twofold among genes detected as copy number reduced, when compared to the abundance of these functions among all genes.

Conclusions

Our results provide genome-wide support for a link between evolutionary adaptation and CND in A. halleri as shown previously for Heavy metal ATPase4. Moreover our results support the hypothesis that elemental defences, which result from the hyperaccumulation of toxic metals, allow the reduction of classical defences against biotic stress as a trade-off.
  相似文献   
27.
Mitochondria exist as a network of interconnected organelles undergoing constant fission and fusion. Current approaches to study mitochondrial morphology are limited by low data sampling coupled with manual identification and classification of complex morphological phenotypes. Here we propose an integrated mechanistic and data-driven modeling approach to analyze heterogeneous, quantified datasets and infer relations between mitochondrial morphology and apoptotic events. We initially performed high-content, multi-parametric measurements of mitochondrial morphological, apoptotic, and energetic states by high-resolution imaging of human breast carcinoma MCF-7 cells. Subsequently, decision tree-based analysis was used to automatically classify networked, fragmented, and swollen mitochondrial subpopulations, at the single-cell level and within cell populations. Our results revealed subtle but significant differences in morphology class distributions in response to various apoptotic stimuli. Furthermore, key mitochondrial functional parameters including mitochondrial membrane potential and Bax activation, were measured under matched conditions. Data-driven fuzzy logic modeling was used to explore the non-linear relationships between mitochondrial morphology and apoptotic signaling, combining morphological and functional data as a single model. Modeling results are in accordance with previous studies, where Bax regulates mitochondrial fragmentation, and mitochondrial morphology influences mitochondrial membrane potential. In summary, we established and validated a platform for mitochondrial morphological and functional analysis that can be readily extended with additional datasets. We further discuss the benefits of a flexible systematic approach for elucidating specific and general relationships between mitochondrial morphology and apoptosis.  相似文献   
28.
Highlights? Complex chromosomal alterations (chromothripsis) observed in medulloblastomas ? Cancers with such alterations harbor TP53 mutations ? Context-specific link between the status of p53 and likelihood of chromothripsis ? p53 status and chromothripsis also correlate with aggressive acute myeloid leukemia  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号