首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   20篇
  国内免费   2篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2017年   5篇
  2016年   6篇
  2015年   7篇
  2014年   17篇
  2013年   16篇
  2012年   11篇
  2011年   11篇
  2010年   14篇
  2009年   10篇
  2008年   6篇
  2007年   4篇
  2006年   12篇
  2005年   7篇
  2004年   5篇
  2003年   6篇
  2002年   4篇
  2001年   11篇
  2000年   4篇
  1999年   7篇
  1998年   3篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   7篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   7篇
  1980年   1篇
  1979年   11篇
  1978年   11篇
  1977年   4篇
  1975年   1篇
  1974年   5篇
  1973年   1篇
  1969年   1篇
排序方式: 共有260条查询结果,搜索用时 187 毫秒
81.
Fasting is one of the simplest metabolic challenges that can be performed in humans. We here report for the first time a comprehensive analysis of the human ??fasting metabolome?? obtained from analysis of plasma and urine samples in a small cohort of healthy volunteers, using nuclear magnetic resonance (NMR), gas chromatography- and liquid chromatography-mass spectrometry (GC-MS and LC-MS). Intra- and inter-individual variation of metabolites was on measurement of four overnight fasting samples collected from each volunteer over a four week period. One additional sample per volunteer was collected following a prolonged fasting period of 36?h. Amongst a total of 377 quantified entities in plasma around 44% were shown to change significantly in concentration when volunteers extended fasting from 12 to 36?h. In addition to known markers (plasma free fatty acids, glycerol, ketone bodies) that reflect changes in the body??s fuel management under fasting conditions a wide range of ??new?? entities such as ??-aminobutyrate as well as other amino and keto acids were identified as fasting markers. Based on multiple correlations amongst the metabolites and selected hormones in plasma such as leptin or insulin-like-growth-factor-1 (IGF-1), a robust metabolic network with coherent regulation of a wide range of metabolites could be identified. The metabolomics approach described here demonstrates the plasticity of human metabolism and identifies new and robust markers of the fasting state.  相似文献   
82.
Although a number of animal experiments and clinical trials have investigated the effects of ginseng roots on diabetes, the relationship between their therapeutic effects on diabetes and the quality and the growth age of this herb have not yet been reported. This study systematically investigated the effects of 3- to 6-year-old ginseng roots on glycemic and plasma lipid control in a rat model of type 2 diabetes. Six groups of male Goto-Kakizaki (GK) rats received either metformin, 3- to 6-year-old ginseng roots, or no treatment. The treatments were administered twice daily for 9 weeks. A combined approach was used that involved applying liquid chromatography-mass spectrometry-based lipidomics, measuring biochemical parameters and profiling the components of ginseng roots of different ages. Compared to the untreated controls, treatment with 4- and 6-year-old ginseng roots significantly improved glucose disposal, and 5-year-old ginseng treatment significantly increased high density lipoprotein cholesterol. Treatment with 6-year-old ginseng significantly decreased total plasma triacylglyceride (TG) and very-low-density lipoprotein cholesterol and improved plasma glycated hemoglobin (HbA1c). In addition, treatment with 4- to 6-year-old ginseng influenced plasma lipidomics in diabetic GK rats by reducing TG lipid species. Metformin significantly reduced fasting blood glucose by 41% and reduced HbA1c by 11%, but showed no effects on the plasma lipid parameters. The present study demonstrates that ginseng roots show growth age-dependent therapeutic effects on hyperlipidemia and hyperglycemia in diabetic GK rats. These age-dependent effects may be linked with the variation in both the ratios and concentrations of specific bioactive ginsenosides in ginseng roots of different growth ages. This study introduced novel systems biology-based approaches for linking biological activities with potential active components in herbal mixtures.  相似文献   
83.
When studying histological characteristics of porcine pancreata in relation to islet isolation, a remarkably high number of hyperemic islets (HIs) was encountered. The abnormalities observed in these HIs ranged from a single dilated vessel to hemorrhages extending into the surrounding exocrine tissue. The aim of the present study was to compare pancreata with and without HI on islet isolation outcomes. This study involved a histological examination of 143 purebred (74 juvenile and 69 adult) and 47 crossbred (only juvenile) porcine pancreata. Islet isolation was performed in 48 purebred adult pigs and in 25 crossbred pigs. Tissue samples were stained with Aldehyde Fuchsine. The presence of HIs was scored semi-quantitatively (HI-, HI+). We observed HIs in 48% of the purebred and in 68% of the crossbred pigs. However, only 3.3±3.1% and 3.1±4.7% of all assessed islets was hyperemic in HI+ pancreata in purebred and crossbred pigs, respectively. In both groups, significantly higher endocrine cell mass was found in the HI+ pancreata (p<0.01). When the higher endocrine cell mass was taken into account, we found significantly lower yields in the HI+ pancreata in both purebred and crossbred pigs (p=0.03 in both groups). The presence of HIs occurs frequently in porcine donor-pancreata and is associated with reduced isolation outcomes.  相似文献   
84.

Background

Causes and consequences of the complex changes in lipids occurring in the metabolic syndrome are only partly understood. Several interconnected processes are deteriorating, which implies that multi-target approaches might be more successful than strategies based on a limited number of surrogate markers. Preparations from Chinese Medicine (CM) systems have been handed down with documented clinical features similar as metabolic syndrome, which might help developing new intervention for metabolic syndrome. The progress in systems biology and specific animal models created possibilities to assess the effects of such preparations. Here we report the plasma and liver lipidomics results of the intervention effects of a preparation SUB885C in apolipoprotein E3 Leiden cholesteryl ester transfer protein (ApoE*3Leiden.CETP) mice. SUB885C was developed according to the principles of CM for treatment of metabolic syndrome. The cannabinoid receptor type 1 blocker rimonabant was included as a general control for the evaluation of weight and metabolic responses.

Methodology/Principal Findings

ApoE*3Leiden.CETP mice with mild hypercholesterolemia were divided into SUB885C-, rimonabant- and non-treated control groups. SUB885C caused no weight loss, but significantly reduced plasma cholesterol (−49%, p<0.001), CETP levels (−31%, p<0.001), CETP activity (−74%, p<0.001) and increased HDL-C (39%, p<0.05). It influenced lipidomics classes of cholesterol esters and triglycerides the most. Rimonabant induced a weight loss (−9%, p<0.05), but only a moderate improvement of lipid profiles. In vitro, SUB885C extract caused adipolysis stimulation and adipogenesis inhibition in 3T3-L1 cells.

Conclusions

SUB885C, a multi-components preparation, is able to produce anti-atherogenic changes in lipids of the ApoE*3Leiden.CETP mice, which are comparable to those obtained with compounds belonging to known drugs (e.g. rimonabant, atorvastatin, niacin). This study successfully illustrated the power of lipidomics in unraveling intervention effects and to help finding new targets or ingredients for lifestyle-related metabolic abnormality.  相似文献   
85.

Introduction

The main objective of this study was to determine whether meniscus cells from the outer (MCO) and inner (MCI) regions of the meniscus interact similarly to or differently with mesenchymal stromal stem cells (MSCs). Previous study had shown that co-culture of meniscus cells with bone marrow-derived MSCs result in enhanced matrix formation relative to mono-cultures of meniscus cells and MSCs. However, the study did not examine if cells from the different regions of the meniscus interacted similarly to or differently with MSCs.

Methods

Human menisci were harvested from four patients undergoing total knee replacements. Tissue from the outer and inner regions represented pieces taken from one third and two thirds of the radial distance of the meniscus, respectively. Meniscus cells were released from the menisci after collagenase treatment. Bone marrow MSCs were obtained from the iliac crest of two patients after plastic adherence and in vitro culture until passage 2. Primary meniscus cells from the outer (MCO) or inner (MCI) regions of the meniscus were co-cultured with MSCs in three-dimensional (3D) pellet cultures at 1:3 ratio, respectively, for 3 weeks in the presence of serum-free chondrogenic medium containing TGF-β1. Mono-cultures of MCO, MCI and MSCs served as experimental control groups. The tissue formed after 3 weeks was assessed biochemically, histochemically and by quantitative RT-PCR.

Results

Co-culture of inner (MCI) or outer (MCO) meniscus cells with MSCs resulted in neo-tissue with increased (up to 2.2-fold) proteoglycan (GAG) matrix content relative to tissues formed from mono-cultures of MSCs, MCI and MCO. Co-cultures of MCI or MCO with MSCs produced the same amount of matrix in the tissue formed. However, the expression level of aggrecan was highest in mono-cultures of MSCs but similar in the other four groups. The DNA content of the tissues from co-cultured cells was not statistically different from tissues formed from mono-cultures of MSCs, MCI and MCO. The expression of collagen I (COL1A2) mRNA increased in co-cultured cells relative to mono-cultures of MCO and MCI but not compared to MSC mono-cultures. Collagen II (COL2A1) mRNA expression increased significantly in co-cultures of both MCO and MCI with MSCs compared to their own controls (mono-cultures of MCO and MCI respectively) but only the co-cultures of MCO:MSCs were significantly increased compared to MSC control mono-cultures. Increased collagen II protein expression was visible by collagen II immuno-histochemistry. The mRNA expression level of Sox9 was similar in all pellet cultures. The expression of collagen × (COL10A1) mRNA was 2-fold higher in co-cultures of MCI:MSCs relative to co-cultures of MCO:MSCs. Additionally, other hypertrophic genes, MMP-13 and Indian Hedgehog (IHh), were highly expressed by 4-fold and 18-fold, respectively, in co-cultures of MCI:MSCs relative to co-cultures of MCO:MSCs.

Conclusions

Co-culture of primary MCI or MCO with MSCs resulted in enhanced matrix formation. MCI and MCO increased matrix formation similarly after co-culture with MSCs. However, MCO was more potent than MCI in suppressing hypertrophic differentiation of MSCs. These findings suggest that meniscus cells from the outer-vascular regions of the meniscus can be supplemented with MSCs in order to engineer functional grafts to reconstruct inner-avascular meniscus.  相似文献   
86.
Although many secondary metabolites with diverse biological activities have been isolated from myxobacteria, most strains of these biotechnologically important gliding prokaryotes remain difficult to handle genetically. In this study we describe the new fast growing myxobacterial thermophilic isolate GT-2 as a heterologous host for the expression of natural product biosynthetic pathways isolated from other myxobacteria. According to the results of sequence analysis of the 16S rDNA, this moderately thermophilic isolate is closely related to Corallococcus macrosporus and was therefore named C. macrosporus GT-2. Fast growth of moderately thermophilic strains results in shorter fermentation and generation times, aspects which are of significant interest for molecular biological work as well as production of secondary metabolites. Development of a genetic manipulation system allowed the introduction of the complete myxochromide biosynthetic gene cluster, located on a transposable fragment, into the chromosome of GT-2. Genetic engineering of the biosynthetic gene cluster by promoter exchange leads to much higher production of myxochromides in the heterologous host C. macrosporus GT-2 in comparison to the original producer Stigmatella aurantiaca and to the previously described heterologous host Pseudomonas putida (600 mg/L versus 8 mg/L and 40 mg/L, respectively).  相似文献   
87.
Activity-dependent changes in synapses rely on functional changes in resident proteins and on gene expression. We addressed the relationship between synapse activity and the expression of synaptic genes by comparing RNA levels in the neocortex of normal mice versus secretion-deficient and therefore synaptically silent munc18-1 (mammalian homologue of Caenorhabditis elegans uncoordinated locomotion-18) null mutants, using microarray expression analysis, real-time quantitative PCR and northern blotting. We hypothesized that genes under the control of synaptic activity would be differentially expressed between mutants and controls. We found that few synaptic genes were differentially expressed. However, most neuropeptide genes with detectable expression on the microarray were differentially expressed, being expressed 3-20-fold higher in control cortex. Several other secreted proteins were also differentially expressed, but genes encoding their receptors and many other synaptic components were not. Differential expression was confirmed by real-time quantitative PCR analysis. In situ hybridization indicated that the difference in neuropeptide expression was uniform and not due to the loss of specific cells in the mutant. In primary sensory neurons, which do not depend on synaptic activity for their input, the differential expression of neuropeptides was not observed. These data argue against a general relationship between the activity of synapses and the expression of their resident proteins, but suggest a link between secretion and the expression of genes encoding the secreted products.  相似文献   
88.

Background  

Carpal tunnel syndrome is a common disorder, which can be treated with surgery or conservative options. However, there is insufficient evidence and no consensus among physicians with regard to the preferred treatment for carpal tunnel syndrome. Therefore, a randomized controlled trial is conducted to compare the short- and long-term efficacy of surgery and splinting in patients with carpal tunnel syndrome. An attempt is also made to avoid the (methodological) limitations encountered in earlier trials on the efficacy of various treatment options for carpal tunnel syndrome.  相似文献   
89.
90.
Campylobacter jejuni is a major cause of bacterial diarrheal disease. Most enteropathogenic bacteria including C. jejuni can invade cultured eukaryotic cells via an actin- and/or microtubule-dependent and an energy-consuming uptake process. Recently, we identified a novel highly efficient C. jejuni invasion pathway that involves bacterial migration into the subcellular space of non-polarized epithelial cells (termed subvasion) followed by invasion from the cell basis. Here we report cellular requirements of this entry mechanism and the subsequent intracellular trafficking route of C. jejuni in polarized islands of Caco-2 intestinal epithelial cells. Advanced microscopy on infected cells revealed that C. jejuni invades the polarized intestinal cells via the subcellular invasion pathway. Remarkably, invasion was not blocked by the inhibitors of microtubule dynamics colchicine or paclitaxel, and was even enhanced after disruption of host cell actin filaments by cytochalasin D. Invasion also continued after dinitrophenol-induced cellular depletion of ATP, whereas this compound effectively inhibited the uptake of invasive Escherichia coli. Confocal microscopy demonstrated that intracellular C. jejuni resided in membrane-bound CD63-positive cellular compartments for up to 24 h. Establishment of a novel luciferase reporter-based bacterial viability assay, developed to overcome the limitations of the classical bacterial recovery assay, demonstrated that a subset of C. jejuni survived intracellularly for up to 48 h. Taken together, our results indicate that C. jejuni is able to actively invade polarized intestinal epithelial cells via a novel actin- and microtubule-independent mechanism and remains metabolically active in the intracellular niche for up to 48 hours.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号