首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1349篇
  免费   111篇
  国内免费   1篇
  2022年   13篇
  2021年   35篇
  2020年   23篇
  2019年   30篇
  2018年   36篇
  2017年   31篇
  2016年   41篇
  2015年   44篇
  2014年   56篇
  2013年   74篇
  2012年   89篇
  2011年   85篇
  2010年   58篇
  2009年   60篇
  2008年   58篇
  2007年   66篇
  2006年   48篇
  2005年   40篇
  2004年   42篇
  2003年   43篇
  2002年   35篇
  2001年   46篇
  2000年   20篇
  1999年   26篇
  1998年   11篇
  1997年   9篇
  1995年   12篇
  1994年   11篇
  1992年   20篇
  1991年   16篇
  1990年   23篇
  1989年   9篇
  1988年   18篇
  1987年   16篇
  1986年   15篇
  1985年   11篇
  1984年   15篇
  1983年   14篇
  1982年   15篇
  1980年   7篇
  1979年   16篇
  1978年   12篇
  1977年   7篇
  1974年   8篇
  1972年   12篇
  1971年   8篇
  1970年   8篇
  1968年   8篇
  1966年   6篇
  1965年   6篇
排序方式: 共有1461条查询结果,搜索用时 171 毫秒
91.
The mosquito innate immune response is able to clear the majority of Plasmodium parasites. This immune clearance is controlled by a number of regulatory molecules including serine protease inhibitors (serpins). To determine whether such molecules could represent a novel target for a malaria transmission-blocking vaccine, we vaccinated mice with Anopheles gambiae serpin-2. Antibodies against Anopheles gambiae serpin-2 significantly reduced the infection of a heterologous Anopheles species (Anopheles stephensi) by Plasmodium berghei, however this effect was not observed with Plasmodium falciparum. Therefore, this approach of targeting regulatory molecules of the mosquito immune system may represent a novel approach to transmission-blocking malaria vaccines.  相似文献   
92.
The high resolution crystal structure of 5-(2-thienylacetamido)-1,3,4-thiadiazole-2-sulfonamide complexed to human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoform hCA II is reported. The compound binds in a similar manner with acetazolamide when the sulfamoyl–thiadiazolyl–acetamido fragment of the two compounds is considered, but the thienyl tail was positioned in the subpocket 2, rarely observed by other investigated CA inhibitors. This positioning allows interaction with amino acid residues (such as Asn67, Ile91, Gln92 and Val121 which are variable in other isoforms of medicinal chemistry interest, such as hCA I, IX and XII. Indeed, the investigated sulfonamide was a medium potency hCA I and II inhibitor but was highly effective as a hCA IX and XII inhibitor. This different behavior with respect to acetazolamide (a promiscuous inhibitor of all these isoforms) has been explained by resolving the crystal structure, and may be used to design more isoform-selective compounds.  相似文献   
93.
The endogenous catecholamine release-inhibitory peptide catestatin (CST) regulates events leading to hypertension and cardiovascular disease. Earlier we studied the structure of CST by NMR, molecular modeling, and amino acid scanning mutagenesis. That structure has now been exploited for elucidation of interface pharmacophores that mediate binding of CST to its target, with consequent secretory inhibition. Designed pharmacophore models allowed screening of 3D structural domains. Selected compounds were tested on both cultured catecholaminergic cells and an in vivo model of hypertension; in each case, the candidates showed substantial mimicry of native CST actions, with preserved or enhanced potency and specificity. The approach and compounds have thus enabled rational design of novel drug candidates for treatment of hypertension or autonomic dysfunction.  相似文献   
94.
The crystal structure of 4-phenylacetamidomethyl-benzenesulfonamide (4ITP) bound to human carbonic anhydrase (hCA, EC 4.2.1.1) II is reported. 4ITP is a medium potency hCA I and II inhibitor (KIs of 54–75 nM), a strong mitochondrial CA VA/VB inhibitor (KIs of 8.3–8.6 nM) and a weak transmembrane CA inhibitor (KIs of 136–212 nM against hCA IX and XII). This elongated compound binds in an extended conformation to hCA II, with its tail lying towards the hydrophobic half of the active site whereas the sulfonamide moiety coordinates the zinc ion. The present structure was compared to that of structurally related aromatic sulfonamides, such as 4-phenylacetamido-benzene-sulfonamide (3OYS), 4-(2-mercaptophenylacetamido)-benzene-sulfonamide (2HD6) and 4-(3-nitrophenyl)-ureido-benzenesulfonamide (3N2P). Homology models of the hCA I, VA, VB, IX and XII structures were build which afforded an understanding of the amino acids involved in the binding of these compounds to these isoforms. The main conclusion of the study is that the orientation of the tail moiety and the presence of flexible linkers as well polar groups in it, strongly influence the potency and the selectivity of the sulfonamides for the inhibition of cytosolic, mitochondrial or transmembrane CA isoforms.  相似文献   
95.
96.
Tenofovir (TFV) has been widely used for pre-exposure prophylaxis of HIV-1 infection with mixed results. While the use of TFV in uninfected individuals for prevention of HIV-1 acquisition is actively being investigated, the possible consequences of TFV exposure for the HIV-target cells and the mucosal microenvironment are unknown. In the current study, we evaluated the effects of TFV treatment on blood-derived CD4+ T cells, monocyte-derived macrophages and dendritic cells (DC). Purified HIV-target cells were treated with different concentrations of TFV (0.001-1.0 mg/ml) for 2 to 24hr. RNA was isolated and RT-PCR was performed to compare the levels of mRNA expression of nucleotidases and pro-inflammatory cytokine genes (MIP3α, IL-8 and TNFα) in the presence or absence of TFV. We found that TFV increases 5’-ecto-nucleotidase (NT5E) and inhibits mitochondrial nucleotidase (NT5M) gene expression and increases 5’ nucleotidase activity in macrophages. We also observed that TFV stimulates the expression and secretion of IL-8 by macrophages, DC, and activated CD4+ T cells and increases the expression and secretion of MIP3α by macrophages. In contrast, TFV had no effect on TNFα secretion from macrophages, DC and CD4+ T cells. Our results demonstrate that TFV alters innate immune responses in HIV-target cells with potential implications for increased inflammation at mucosal surfaces. As new preventive trials are designed, these findings should provide a foundation for understanding the effects of TFV on HIV-target cells in microbicide trials.  相似文献   
97.

Electronic structure of the XeOF2 molecule and its two complexes with HX (X= F, Cl, Br, I) molecules have been studied in the gas phase using quantum chemical topology methods: topological analysis of electron localization function (ELF), electron density, ρ(r), reduced gradient of electron density |RDG(r)| in real space, and symmetry adapted perturbation theory (SAPT) in the Hilbert space. The wave function has been approximated by the MP2 and DFT methods, using APF-D, B3LYP, M062X, and B2PLYP functionals, with the dispersion correction as proposed by Grimme (GD3). For the Xe-F and Xe=O bonds in the isolated XeOF2 molecule, the bonding ELF-localization basins have not been observed. According to the ELF results, these interactions are not of covalent nature with shared electron density. There are two stable F2OXeHF complexes. The first one is stabilized by the F-HF and XeF interactions (type I) and the second by the F-HO hydrogen bond (type II). The SAPT analysis confirms the electrostatic term, Eelst (1) and the induction energy, Eind (2) to be the major contributors to stabilizing both types of complexes.

  相似文献   
98.
99.
In 10–20% of the cases of chronic lymphocytic leukemia of B-cell phenotype (B-CLL), the IGHV1-69 germline is utilized as VH gene of the B cell receptor (BCR). Mouse G6 (MuG6) is an anti-idiotypic monoclonal antibody discovered in a screen against rheumatoid factors (RFs) that binds with high affinity to an idiotope expressed on the 51p1 alleles of IGHV1-69 germline gene encoded antibodies (G6-id+). The finding that unmutated IGHV1-69 encoded BCRs are frequently expressed on B-CLL cells provides an opportunity for anti-idiotype monoclonal antibody immunotherapy. In this study, we first showed that MuG6 can deplete B cells encoding IGHV1-69 BCRs using a novel humanized GTL mouse model. Next, we humanized MuG6 and demonstrated that the humanized antibodies (HuG6s), especially HuG6.3, displayed ~2-fold higher binding affinity for G6-id+ antibody compared to the parental MuG6. Additional studies showed that HuG6.3 was able to kill G6-id+ BCR expressing cells and patient B-CLL cells through antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Finally, both MuG6 and HuG6.3 mediate in vivo depletion of B-CLL cells in NSG mice. These data suggest that HuG6.3 may provide a new precision medicine to selectively kill IGHV1-69-encoding G6-id+ B-CLL cells.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号