首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1106篇
  免费   77篇
  国内免费   62篇
  2024年   1篇
  2023年   18篇
  2022年   15篇
  2021年   78篇
  2020年   43篇
  2019年   58篇
  2018年   48篇
  2017年   41篇
  2016年   61篇
  2015年   104篇
  2014年   73篇
  2013年   114篇
  2012年   121篇
  2011年   95篇
  2010年   65篇
  2009年   35篇
  2008年   43篇
  2007年   24篇
  2006年   29篇
  2005年   19篇
  2004年   17篇
  2003年   5篇
  2002年   17篇
  2001年   15篇
  2000年   12篇
  1999年   15篇
  1998年   8篇
  1997年   11篇
  1996年   6篇
  1995年   7篇
  1994年   6篇
  1993年   5篇
  1992年   11篇
  1991年   6篇
  1990年   5篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
排序方式: 共有1245条查询结果,搜索用时 359 毫秒
21.
脉冲降水对森林中土壤有机物矿化的影响:空间变化和控制因素 降水脉冲效应使土壤有机物在短时间内迅速分解并释放大量CO2到大气中。降水脉冲效应对生态系统的碳循环和土壤碳平衡的研究具有十分重要的意义,但它在森林土壤中的空间变化和基本机制仍不清楚。我们采集中国东部22个典型森林生态系统的土壤样品(0–10cm),研究模拟脉冲降水对土壤微生物呼吸速率的影响。模拟降水脉冲使土壤样品达到65%饱和含水量,以分钟为单位测量Rs,持续48 小时。研究结果显示,降水脉冲可以使微生物呼吸速率迅速增加1.70–38.12倍。微生物最大呼吸速率 (Rs-soil-max)、碳释放总量Rs (ARs-soil)和达到呼吸峰值的时间(TRs-soil-max)在不同的土壤中存在显著差异。此外,不同 气候区的脉冲效应也有明显不同。中温带的Rs-soil-max (11.701 µg C g−1 soil h−1)和ARs-soil (300.712 µg C g−1 soil)最高。土壤化学特性(总碳和总氮、pH值和氧化还原电位)和土壤粒径与森林土壤的脉冲效应密切相关,但土壤微生物的贡献较小。我们的研究结果表明,在大尺度范围内,脉冲变化短期内增加森林土壤中CO2的排放,并揭示了对这种变化影响最大的因素。这些发现为未来对森林生态系统的碳循环和调节全球生态系统碳循环的研究提供科学数据支持。  相似文献   
22.
Acid soil/aluminium toxicity is one of the major constraints on barley production around the world. Genetic improvement is the best solution and molecular-marker-assisted selection has proved to be an efficient tool for developing barley cultivars with acid soil/aluminium tolerance. In this study, barley variety Svanhals—introduced from CYMMIT (International Maize and Wheat Improvement Center)—was identified as acid soil/aluminium tolerant and the tolerance was mapped to chromosome 4H in 119 doubled haploid (DH) lines from a cross of Hamelin/Svanhals. The HvMATE gene, encoding an aluminium-activated citrate transporter, was selected as a candidate gene and gene-specific molecular markers were developed to detect acid soil/aluminium tolerance based on the polymerase chain reaction. Sequence analysis of the HvMATE gene identified a 21-bp indel (insertion–deletion) between the tolerant and sensitive cultivars. The new marker was further mapped to the QTL (quantitative trait loci) region on chromosome 4H for acid soil tolerance and accounted for 66.9 % of phenotypic variation in the DH population. Furthermore, the polymorphism was confirmed in other tolerant varieties which have been widely used as a source of acid soil tolerance in Australian barley breeding programs. The new gene-specific molecular marker provides an effective and simple molecular tool for selecting the acid soil tolerance gene from multiple tolerance sources.  相似文献   
23.

Objective

This study evaluated the effects of ultrasound combined with the homemade nitric oxide (NO) micro-bubble destruction on the in vitro proliferation, apoptosis, and migration of mesenchymal stem cells (MSCs). Furthermore, we studied whether or not irradiation of the NO micro-bubble combined with bone-marrow derived MSC infusion had a better effect on treating myocardial infarction. The possible mechanism of MSC delivery into the infarcted myocardium was also investigated.

Methods

The murine bone marrow-derived MSCs were isolated, cultured, irradiated, and combined with different concentrations of NO microbubbles. MTT proliferation assay, annexin V-FITC apoptosis detection, migration assay, and RT-PCR were performed 24 h after the irradiation. The NO micro-bubbles was a intravenously injected, followed by the infusion of MSCs, which were labeled by CM-Dil. Myocardium was harvested 48 h later and the distribution of MSCs was observed by laser scanning confocal microscope after frozen sectioning. Echocardiography, histological examination, RT-PCR, and western blotting were performed four weeks after the cell transplantation.

Results

Ultrasound combined with 1:70 NO micro-bubbles had no significant impact on the proliferation or apoptosis of MSCs. Transwell chamber findings demonstrated that MSCs migrated more efficiently in group that underwent ultrasound combined with 1:70 NO micro-bubbles. The Real-time PCR results indicated that the expression of CXCR4 was much higher in the group undergoing ultrasound combined with 1:70 NO micro-bubbles. The normalized fluorescence intensity greatly increased in the group of US+NO micro-bubbles and the cardiac function was also markedly improved. Immunohistochemical staining showed that the capillary density was much greater in the group of US+NO micro-bubbles as compared to that of the other groups. RT-PCR and western blotting also revealed a higher SDF-1 and VEGF expression in the group of US+NO micro-bubbles.

Conclusions

NO micro-bubbles could be used in the cell transplantation, which efficiently promoted the MSC homing into the infarcted myocardium.  相似文献   
24.
Pancreatic fibrosis, a prominent histopathological feature of chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma, is essentially a dynamic process that leads to irreversible scarring of parenchymal tissues of the pancreas. Though the exact mechanisms of its initiation and development are poorly understood, recent studies suggested that the activation of pancreatic stellate cells (PSCs) plays a critical role in eliciting such active course of fibrogenesis. Anthraquinone compounds possess anti-inflammatory bioactivities whereas its natural derivative rhein has been shown to effectively reduce tissue edema and free-radical production in rat models of inflammatory conditions. Apart from its anti-inflammatory properties, rhein actually exerts strong anti-fibrotic effects in our current in-vivo and in-vitro experiments. In the mouse model of cerulein-induced CP, prolonged administration of rhein at 50 mg/kg/day significantly decreased immunoreactivities of the principal fibrotic activators alpha-smooth muscle actin (α-SMA) and transforming growth factor-beta (TGF-β) on pancreatic sections implicating the activation of PSCs, which is the central tread to fibrogenesis, was attenuated. Consequently, the overwhelmed deposition of extracellular matrix proteins fibronectin 1 (FN1) and type I collagen (COL I-α1) in exocrine parenchyma was found accordingly reduced. In addition, the expression levels of sonic hedgehog (SHH), which plays important roles in molecular modulation of various fibrotic processes, and its immediate effector GLI1 in pancreatic tissues were positively correlated to the degree of cerulein-induced fibrosis. Such up-regulation of SHH signaling was restrained in rhein-treated CP mice. In cultured PSCs, we demonstrated that the expression levels of TGF-β-stimulated fibrogenic markers including α-SMA, FN1 and COL I-α1 as well as SHH were all notably suppressed by the application of rhein at 10 μM. The present study firstly reported that rhein attenuates PSC activation and suppresses SHH/GLI1 signaling in pancreatic fibrosis. With strong anti-fibrotic effects provided, rhein can be a potential remedy for fibrotic and/or PSC-related pathologies in the pancreas.  相似文献   
25.
The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single‐gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high‐throughput proteomics platforms, such as protein microarrays and cell‐based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high‐throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and CreatorTM DNA Cloning System) and compare them side‐by‐side. We also report an example of high‐throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12).  相似文献   
26.
IL-23 regulates myriad processes in the innate and adaptive immune systems, and is a critical mediator of the proinflammatory effects exerted by Th17 cells in many diseases. In this study, we investigated whether and how hepatitis B virus (HBV) causes liver damage directly through the IL-23 signaling pathway. In biopsied liver tissues from HBV-infected patients, expression of both IL-23 and IL-23R was remarkably elevated. In vivo observations also indicated that the main sources of IL-23 were myeloid dendritic cells (mDCs) and macrophages. Analysis of in vitro differentiated immature DCs and macrophages isolated from healthy donors revealed that the HBV surface antigen (HBsAg) efficiently induces IL-23 secretion in a mannose receptor (MR)-dependent manner. Culture with an endosomal acidification inhibitor and the dynamin inhibitor showed that, upon binding to the MR, the HBsAg is taken up by mDCs and macrophages through an endocytosis mechanism. In contrast, although the HBV core antigen (HBcAg) can also stimulate IL-23 secretion from mDCs, the process was MR- and endocytosis-independent. In addition, IL-23 was shown to be indispensible for HBsAg-stimulated differentiation of naïve CD4+ T cells into Th17 cells, which were determined to be the primary source of IL-17 in HBV-infected livers. The cognate receptor, IL-17R, was found to exist on the hepatic stellate cells and mDCs, both of which might represent the potential target cells of IL-17 in hepatitis B disease. These data provide novel insights into a yet unrecognized mechanism of HBV-induced hepatitis, by which increases in IL-23 expression, through an MR/endocytosis-dependent or -independent manner, produce liver damage through the IL-23/IL-17 axis.  相似文献   
27.
Invasion and metastasis of solid tumors are the major causes of death in cancer patients. Cancer stem cells (CSCs) constitute a small fraction of tumor cell population, but play a critical role in tumor invasion and metastasis. The xenograft of tumor cells in immunodeficient mice is one of commonly used in vivo models to study the invasion and metastasis of cancer cells. However, this model is time-consuming and labor intensive. Zebrafish (Danio rerio) and their transparent embryos are emerging as a promising xenograft tumor model system for studies of tumor invasion. In this study, we established a tumor invasion model by using zebrafish embryo xenografted with human glioblastoma cell line U87 and its derived cancer stem cells (CSCs). We found that CSCs-enriched from U87 cells spreaded via the vessels within zebrafish embryos and such cells displayed an extremely high level of invasiveness which was associated with the up-regulated MMP-9 by CSCs. The invasion of glioma CSCs (GSCs) in zebrafish embryos was markedly inhibited by an MMP-9 inhibitor. Thus, our zebrafish embryo model is considered a cost-effective approach tostudies of the mechanisms underlying the invasion of CSCs and suitable for high-throughput screening of novel anti-tumor invasion/metastasis agents.  相似文献   
28.
The molecular mechanism of human anal squamous cell carcinoma (ASCC) is unclear, and the accumulating evidence indicate association of ASCC with the activation of the Akt/mTOR pathway. Here we describe a mouse model with spontaneous anal squamous cell cancer, wherein a combined deletion of Tgfbr1 and Pten in stratified squamous epithelia was induced using inducible K14-Cre. Histopathologic analyses confirmed that 33.3% of the mice showed increased susceptibility to ASCC and precancerous lesions. Biomarker analyses demonstrated that the activation of the Akt pathway in ASCC of the Tgfbr1 and Pten double knockout (2cKO) mouse was similar to that observed in human anal cancer. Chemopreventive experiments using mTOR inhibitor-rapamycin treatment significantly delayed the onset of the ASCC tumors and reduced the tumor burden in 2cKO mice by decreasing the phosphorylation of Akt and S6. This is the first conditional knockout mouse model used for investigating the contributions of viral and cellular factors in anal carcinogenesis without carcinogen-mediated induction, and it would provide a platform for assessing new therapeutic modalities for treating and/or preventing this type of cancer.  相似文献   
29.
The aim of this study was to determine whether adipose derived stem cells (ADSCs) expressing vascular endothelial growth factor (VEGF) gene can improve endothelial function, recover the impaired VEGF signaling pathway and enhance smooth muscle contents in a rat diabetic erectile dysfunction (DED) model. DED rats were induced via intraperitoneal injection of streptozotocin (40 mg/kg), and then screened by apomorphine (100 µg/kg). Five groups were used (n = 12/group)–Group 1 (G1): intracavernous injection of lentivirus-VEGF; G2: ADSCs injection; G3: VEGF-expressing ADSCs injection; G4: Phosphate buffered saline injection; G1–G4 were DED rats; G5: normal rats. The mean arterial pressure (MAP) and intracavernosal pressure (ICP) were measured at days 7 and 28 after the injections. The components of the VEGF system, endothelial, smooth muscle, pericytes markers in cavernoursal tissue were assessed. On day 28 after injection, the group with intracavernosum injection of ADSCs expressing VEGF displayed more efficiently and significantly raised ICP and ICP/MAP (p<0.01) than those with ADSCs or lentivirus-VEGF injection. Western blot and immunofluorescent analysis demonstrated that improved erectile function by ADSCs-VEGF was associated with increased expression of endothelial markers (VEGF, VEGF R1, VEGF R2, eNOS, CD31 and vWF), smooth muscle markers (a-actin and smoothelin), and pericyte markers (CD146 and NG2). ADSCs expressing VEGF produced a therapeutic effect and restored erectile function in diabetic rats by enhancing VEGF-stimulated endothelial function and increasing the contents of smooth muscle and pericytes.  相似文献   
30.
Transferrin receptor (TfR) has been used as a target for the antibody-based therapy of cancer due to its higher expression in tumors relative to normal tissues. Great potential has been shown by anti-TfR antibodies combined with chemotherapeutic drugs as a possible cancer therapeutic strategy. In our study, we investigated the anti-tumor effects of anti-TfR monoclonal antibody (mAb) alone or in combination with sinomenine hydrochloride in vitro. Results suggested that anti-TfR mAb or sinomenine hydrochloride could induce apoptosis, inhibit proliferation, and affect the cell cycle. A synergistic effect was found in relation to tumor growth inhibition and the induction of apoptosis when anti-TfR mAb and sinomenine hydrochloride were used simultaneously. The expression of COX-2 and VEGF protein in HepG2 cells treated with anti-TfR mAb alone was increased in line with increasing dosage of the agent. In contrast, COX-2 expression was dramatically decreased in HepG2 cells treated with sinomenine hydrochloride alone. Furthermore, we demonstrated that the inhibitory effects of sinomenine hydrochloride and anti-TfR mAb administered in combination were more prominent than when the agents were administered singly. To sum up, these results showed that the combined use of sinomenine hydrochloride and anti-TfR mAb may exert synergistic inhibitory effects on human hepatoma HepG2 cells in a COX-2-dependent manner. This finding provides new insight into how tumor cells overcome the interference of iron intake to survive and forms the basis of a new therapeutic strategy involving the development of anti-TfR mAb combined with sinomenine hydrochloride for liver cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号