首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   6篇
  2021年   2篇
  2019年   2篇
  2017年   1篇
  2016年   5篇
  2015年   7篇
  2014年   5篇
  2013年   6篇
  2012年   6篇
  2011年   12篇
  2010年   5篇
  2009年   3篇
  2008年   6篇
  2007年   2篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   5篇
  2000年   5篇
  1999年   6篇
  1998年   5篇
  1997年   5篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有128条查询结果,搜索用时 656 毫秒
71.
Abstract. Nanocyperion plant communities occur on wet, more or less nutrient‐poor and sparsely vegetated soils in temperate climates and are characterized by tiny, very shortlived plant species. Most of these have become locally extinct. It is generally assumed that drainage and eutrophication were the most important reasons for this decrease. However, chemical analysis of soil pore water from plots on growth sites of these ephemerals showed that phosphorus availability was relatively high. In a greenhouse experiment, the growth of ephemeral species was strongly limited by the amount of available phosphorus, whereas there was little or no limitation to the growth of other plant species from this habitat. At low phosphorus concentrations, the ephemeral species reached their reproductive phase within the same period, but showed a strong reduction in the amount of flowers that were produced. We concluded that ephemeral species in particular require a minimum amount of phosphorus for reproduction. Other species on nutrient‐poor, wet soils have a longer life span and can postpone flowering in nutrient‐poor soils. In contrast to other short‐lived plant species from the same habitat, the growth of ephemeral species was barely stimulated by enhanced nitrogen availability. Apparently, the ephemerals are adapted to low nitrogen concentrations. The occurrence on nitrogen‐poor and relatively phosphorus‐rich soils suggests that this community may be very sensitive to nitrogen deposition. Reduced phosphorus availability below the minimum requirements of ephemerals, for example after acidification or the exclusion of human activities, has possibly contributed to the decrease of ephemeral plant species.  相似文献   
72.
We investigated the effects of diclofenac sodium (DS) on development of the optic nerve in utero. Pregnant female rats were separated into three groups: control, saline treated and DS treated. Offspring of these animals were divided into 4-week-old and 20-week-old groups. At the end of the 4th and 20th weeks of postnatal life, the animals were sacrificed, and right optic nerves were excised and sectioned for ultrastructural and stereological analyses. We demonstrated that both DS and saline produced structural and morphometric changes in the total axon number and density of axons, but decreased the myelin sheath thickness in male optic nerves. All ultrastructural and morphometric features were well developed in 20-week-old rats. We showed that development of the optic nerve continues during the early postnatal period and that some compensation for exposure to deleterious agents in utero may occur during early postnatal life.  相似文献   
73.
74.
Molecular characterization of breakpoints of chromosomal rearrangements is a successful strategy for the identification of candidate disease genes. Mapping translocation breakpoints and rearranged chromosomal boundaries is labor intensive and/or time consuming. Here, we present a novel and rapid procedure to map such chromosomal breakpoints by hybridizing amplified microdissection derived DNA of aberrant chromosomes to arrays containing genomic clones. We illustrate the potential of the technique by molecularly delineating the breakpoints in five small supernumerary marker chromosomes (sSMC) and mapping the breakpoints of five different chromosomal translocations.  相似文献   
75.

Background

Evidence is accumulating that perturbation of early life microbial colonization of the gut induces long-lasting adverse health effects in individuals. Understanding the mechanisms behind these effects will facilitate modulation of intestinal health. The objective of this study was to identify biological processes involved in these long lasting effects and the (molecular) factors that regulate them. We used an antibiotic and the same antibiotic in combination with stress on piglets as an early life perturbation. Then we used host gene expression data from the gut (jejunum) tissue and community-scale analysis of gut microbiota from the same location of the gut, at three different time-points to gauge the reaction to the perturbation. We analysed the data by a new combination of existing tools. First, we analysed the data in two dimensions, treatment and time, with quadratic regression analysis. Then we applied network-based data integration approaches to find correlations between host gene expression and the resident microbial species.

Results

The use of a new combination of data analysis tools allowed us to identify significant long-lasting differences in jejunal gene expression patterns resulting from the early life perturbations. In addition, we were able to identify potential key gene regulators (hubs) for these long-lasting effects. Furthermore, data integration also showed that there are a handful of bacterial groups that were associated with temporal changes in gene expression.

Conclusion

The applied systems-biology approach allowed us to take the first steps in unravelling biological processes involved in long lasting effects in the gut due to early life perturbations. The observed data are consistent with the hypothesis that these long lasting effects are due to differences in the programming of the gut immune system as induced by the temporary early life changes in the composition and/or diversity of microbiota in the gut.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1733-8) contains supplementary material, which is available to authorized users.  相似文献   
76.

Background  

The Midwest Center for Structural Genomics (MCSG) is one of the large-scale centres of the Protein Structure Initiative (PSI). During the first two phases of the PSI the MCSG has solved over a thousand protein structures. A criticism of structural genomics is that target selection strategies mean that some structures are solved without having a known function and thus are of little biomedical significance. Structures of unknown function have stimulated the development of methods for function prediction from structure.  相似文献   
77.

Background  

Affymetrix High Density Oligonuclotide Arrays (HDONA) simultaneously measure expression of thousands of genes using millions of probes. We use correlations between measurements for the same gene across 6685 human tissue samples from NCBI's GEO database to indicated the quality of individual HG-U133A probes. Low correlation indicates a poor probe.  相似文献   
78.
Cardiac and skeletal muscle critically depend on mitochondrial energy metabolism for their normal function. Recently, we showed that apoptosis-inducing factor (AIF), a mitochondrial protein implicated in programmed cell death, plays a role in mitochondrial respiration. However, the in vivo consequences of AIF-regulated mitochondrial respiration resulting from a loss-of-function mutation in Aif are not known. Here, we report tissue-specific deletion of Aif in the mouse. Mice in which Aif has been inactivated specifically in cardiac and skeletal muscle exhibit impaired activity and protein expression of respiratory chain complex I. Mutant animals develop severe dilated cardiomyopathy, heart failure, and skeletal muscle atrophy accompanied by lactic acidemia consistent with defects in the mitochondrial respiratory chain. Isolated hearts from mutant animals exhibit poor contractile performance in response to a respiratory chain-dependent energy substrate, but not in response to glucose, supporting the notion that impaired heart function in mutant animals results from defective mitochondrial energy metabolism. These data provide genetic proof that the previously defined cell death promoter AIF has a second essential function in mitochondrial respiration and aerobic energy metabolism required for normal heart function and skeletal muscle homeostasis.  相似文献   
79.
80.
DNA sequences for the mitochondrial cytochrome b gene were determined for 13 species of sharks. Rates and patterns of amino acid replacement are compared for sharks and mammals. Absolute rates of cytochrome b evolution are six times slower in sharks than in mammals. Bivariate plots of the number of nonsynonymous and silent transversions are indistinguishable in the two groups, however, suggesting that the differences in amino acid replacement rates are due primarily to differences in DNA substitution rates. Patterns of amino acid replacement are also similar in the two groups. Conserved and variable regions occur in the same parts of the cytochrome b gene, and there is little evidence that the types of amino acid changes are significantly different between the groups. Similarity in the relative rates and patterns of protein change between the two groups prevails despite dramatic differences in the cellular environments of sharks and mammals. Poor penetrance of physiological differences through to rates of protein evolution provides support for the neutral theory and suggests that, for cytochrome b, patterns of evolution have been relatively constant throughout much of vertebrate history.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号