首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 824 毫秒
1.
As the global Structural Genomics projects have picked up pace, the number of structures annotated in the Protein Data Bank as hypothetical protein or unknown function has grown significantly. A major challenge now involves the development of computational methods to assign functions to these proteins accurately and automatically. As part of the Midwest Center for Structural Genomics (MCSG) we have developed a fully automated functional analysis server, ProFunc, which performs a battery of analyses on a submitted structure. The analyses combine a number of sequence-based and structure-based methods to identify functional clues. After the first stage of the Protein Structure Initiative (PSI), we review the success of the pipeline and the importance of structure-based function prediction. As a dataset, we have chosen all structures solved by the MCSG during the 5 years of the first PSI. Our analysis suggests that two of the structure-based methods are particularly successful and provide examples of local similarity that is difficult to identify using current sequence-based methods. No one method is successful in all cases, so, through the use of a number of complementary sequence and structural approaches, the ProFunc server increases the chances that at least one method will find a significant hit that can help elucidate function. Manual assessment of the results is a time-consuming process and subject to individual interpretation and human error. We present a method based on the Gene Ontology (GO) schema using GO-slims that can allow the automated assessment of hits with a success rate approaching that of expert manual assessment.  相似文献   

2.
Structural Genomics has been successful in determining the structures of many unique proteins in a high throughput manner. Still, the number of known protein sequences is much larger than the number of experimentally solved protein structures. Homology (or comparative) modeling methods make use of experimental protein structures to build models for evolutionary related proteins. Thereby, experimental structure determination efforts and homology modeling complement each other in the exploration of the protein structure space. One of the challenges in using model information effectively has been to access all models available for a specific protein in heterogeneous formats at different sites using various incompatible accession code systems. Often, structure models for hundreds of proteins can be derived from a given experimentally determined structure, using a variety of established methods. This has been done by all of the PSI centers, and by various independent modeling groups. The goal of the Protein Model Portal (PMP) is to provide a single portal which gives access to the various models that can be leveraged from PSI targets and other experimental protein structures. A single interface allows all existing pre-computed models across these various sites to be queried simultaneously, and provides links to interactive services for template selection, target-template alignment, model building, and quality assessment. The current release of the portal consists of 7.6 million model structures provided by different partner resources (CSMP, JCSG, MCSG, NESG, NYSGXRC, JCMM, ModBase, SWISS-MODEL Repository). The PMP is available at and from the PSI Structural Genomics Knowledgebase.  相似文献   

3.

Background  

Structural genomics projects such as the Protein Structure Initiative (PSI) yield many new structures, but often these have no known molecular functions. One approach to recover this information is to use 3D templates – structure-function motifs that consist of a few functionally critical amino acids and may suggest functional similarity when geometrically matched to other structures. Since experimentally determined functional sites are not common enough to define 3D templates on a large scale, this work tests a computational strategy to select relevant residues for 3D templates.  相似文献   

4.

Background  

Computer models of the electrical and mechanical actions of the heart, solved on geometrically realistic domains, are becoming an increasingly useful scientific tool. Construction of these models requires detailed measurement of the microstructural features which impact on the function of the heart. Currently a few generic cardiac models are in use for a wide range of simulation problems, and contributions to publicly accessible databases of cardiac structures, on which models can be solved, remain rare. This paper presents to-date the largest database of porcine left ventricular segment microstructural architecture, for use in both electrical and mechanical simulation.  相似文献   

5.

Background  

Structural genomics initiatives were established with the aim of solving protein structures on a large-scale. For many initiatives, such as the Protein Structure Initiative (PSI), the primary aim of target selection is focussed towards structurally characterising protein families which, so far, lack a structural representative. It is therefore of considerable interest to gain insights into the number and distribution of these families, and what efforts may be required to achieve a comprehensive structural coverage across all protein families.  相似文献   

6.

Background  

Ambiguity is a problem in biosequence analysis that arises in various analysis tasks solved via dynamic programming, and in particular, in the modeling of families of RNA secondary structures with stochastic context free grammars. Several types of analysis are invalidated by the presence of ambiguity. As this problem inherits undecidability (as we show here) from the namely problem for context free languages, there is no complete algorithmic solution to the problem of ambiguity checking.  相似文献   

7.

Background  

The number of protein structures from structural genomics centers dramatically increases in the Protein Data Bank (PDB). Many of these structures are functionally unannotated because they have no sequence similarity to proteins of known function. However, it is possible to successfully infer function using only structural similarity.  相似文献   

8.

Background  

SPOUT methyltransferases (MTases) are a large class of S-adenosyl-L-methionine-dependent enzymes that exhibit an unusual alpha/beta fold with a very deep topological knot. In 2001, when no crystal structures were available for any of these proteins, Anantharaman, Koonin, and Aravind identified homology between SpoU and TrmD MTases and defined the SPOUT superfamily. Since then, multiple crystal structures of knotted MTases have been solved and numerous new homologous sequences appeared in the databases. However, no comprehensive comparative analysis of these proteins has been carried out to classify them based on structural and evolutionary criteria and to guide functional predictions.  相似文献   

9.
Ab initio modeling of small proteins by iterative TASSER simulations   总被引:1,自引:0,他引:1  

Background  

Predicting 3-dimensional protein structures from amino-acid sequences is an important unsolved problem in computational structural biology. The problem becomes relatively easier if close homologous proteins have been solved, as high-resolution models can be built by aligning target sequences to the solved homologous structures. However, for sequences without similar folds in the Protein Data Bank (PDB) library, the models have to be predicted from scratch. Progress in the ab initio structure modeling is slow. The aim of this study was to extend the TASSER (threading/assembly/refinement) method for the ab initio modeling and examine systemically its ability to fold small single-domain proteins.  相似文献   

10.

Background  

The prediction of protein-protein interactions is an important step toward the elucidation of protein functions and the understanding of the molecular mechanisms inside the cell. While experimental methods for identifying these interactions remain costly and often noisy, the increasing quantity of solved 3D protein structures suggests that in silico methods to predict interactions between two protein structures will play an increasingly important role in screening candidate interacting pairs. Approaches using the knowledge of the structure are presumably more accurate than those based on sequence only. Approaches based on docking protein structures solve a variant of this problem, but these methods remain very computationally intensive and will not scale in the near future to the detection of interactions at the level of an interactome, involving millions of candidate pairs of proteins.  相似文献   

11.

Background  

There are several evolutionarily unrelated and structurally dissimilar superfamilies of S-adenosylmethionine (AdoMet)-dependent methyltransferases (MTases). A new superfamily (SPOUT) has been recently characterized on a sequence level and three structures of its members (1gz0, 1ipa, and 1k3r) have been solved. However, none of these structures include the cofactor or the substrate. Due to the strong evolutionary divergence and the paucity of experimental information, no confident predictions of protein-ligand and protein-substrate interactions could be made, which hampered the study of sequence-structure-function relationships in the SPOUT superfamily.  相似文献   

12.

Background  

Owing to the rapid expansion of RNA structure databases in recent years, efficient methods for structure comparison are in demand for function prediction and evolutionary analysis. Usually, the similarity of RNA secondary structures is evaluated based on tree models and dynamic programming algorithms. We present here a new method for the similarity analysis of RNA secondary structures.  相似文献   

13.

Background  

In sequence analysis the multiple alignment builds the fundament of all proceeding analyses. Errors in an alignment could strongly influence all succeeding analyses and therefore could lead to wrong predictions. Hand-crafted and hand-improved alignments are necessary and meanwhile good common practice. For RNA sequences often the primary sequence as well as a secondary structure consensus is well known, e.g., the cloverleaf structure of the t-RNA. Recently, some alignment editors are proposed that are able to include and model both kinds of information. However, with the advent of a large amount of reliable RNA sequences together with their solved secondary structures (available from e.g. the ITS2 Database), we are faced with the problem to handle sequences and their associated secondary structures synchronously.  相似文献   

14.
The ability of photosynthetic organisms to use the sun's light as a sole source of energy sustains life on our planet. Photosystems I (PSI) and II (PSII) are large, multi-subunit, pigment–protein complexes that enable photosynthesis, but this intriguing process remains to be explained fully. Currently, crystal structures of these complexes are available for thermophilic prokaryotic cyanobacteria. The mega-Dalton trimeric PSI complex from thermophilic cyanobacterium, Thermosynechococcus elongatus, was solved at 2.5?Å resolution with X-ray crystallography. That structure revealed the positions of 12 protein subunits (PsaA-F, PsaI-M, and PsaX) and 127 cofactors.Although mesophilic organisms perform most of the world's photosynthesis, no well-resolved trimeric structure of a mesophilic organism exists. Our research model for a mesophilic cyanobacterium was Synechocystis sp. PCC6803. This study aimed to obtain well-resolved crystal structures of [1] a monomeric PSI with all subunits, [2] a trimeric PSI with a reduced number of subunits, and [3] the full, trimeric wild-type PSI complex. We only partially succeeded with the first two structures, but we successfully produced the trimeric PSI structure at 2.5?Å resolution. This structure was comparable to that of the thermophilic species, but we provided more detail. The PSI trimeric supercomplex consisted of 33 protein subunits, 72 carotenoids, 285 chlorophyll a molecules, 51 lipids, 9 iron-sulfur clusters, 6 plastoquinones, 6 putative calcium ions, and over 870 water molecules.This study showed that the structure of the PSI in Synechocystis sp. PCC6803 differed from previously described PSI structures. These findings have broadened our understanding of PSI structure.  相似文献   

15.

Background

midregional proadrenomedullin (MR-proADM) is a prognostic biomarker in patients with community-acquired pneumonia (CAP). We sought to confirm whether MR-proADM added to Pneumonia Severity Index (PSI) improves the potential prognostic value of PSI alone, and tested to what extent this combination could be useful in predicting poor outcome of patients with CAP in an Emergency Department (ED).

Methods

Consecutive patients diagnosed with CAP were enrolled in this prospective, single-centre, observational study. We analyzed the ability of MR-proADM added to PSI to predict poor outcome using receiver operating characteristic (ROC) curves, logistic regression and risk reclassification and comparing it with the ability of PSI alone. The primary outcome was “poor outcome”, defined as the incidence of an adverse event (ICU admission, hospital readmission, or mortality at 30 days after CAP diagnosis).

Results

226 patients were included; 33 patients (14.6%) reached primary outcome. To predict primary outcome the highest area under curve (AUC) was found for PSI (0.74 [0.64-0.85]), which was not significantly higher than for MR-proADM (AUC 0.72 [0.63-0.81, p > 0.05]). The combination of PSI and MR-proADM failed to improve the predictive potential of PSI alone (AUC 0.75 [0.65-0.85, p=0.56]). Ten patients were appropriately reclassified when the combined PSI and MR-proADM model was used as compared with the model of PSI alone. Net reclassification improvement (NRI) index was statistically significant (7.69%, p = 0.03) with an improvement percentage of 3.03% (p = 0.32) for adverse event, and 4.66% (P = 0.02) for no adverse event.

Conclusion

MR-proADM in combination with PSI may be helpful in individual risk stratification for short-term poor outcome of CAP patients, allowing a better reclassification of patients compared with PSI alone.  相似文献   

16.

Background  

The use of knowledge-based potential function is a powerful method for protein structure evaluation. A variety of formulations that evaluate single or multiple structural features of proteins have been developed and studied. The performance of functions is often evaluated by discrimination ability using decoy structures of target proteins. A function that can evaluate coarse-grained structures is advantageous from many aspects, such as relatively easy generation and manipulation of model structures; however, the reduction of structural representation is often accompanied by degradation of the structure discrimination performance.  相似文献   

17.

Background  

Disordered regions are segments of the protein chain which do not adopt stable structures. Such segments are often of interest because they have a close relationship with protein expression and functionality. As such, protein disorder prediction is important for protein structure prediction, structure determination and function annotation.  相似文献   

18.

Background  

The first report on the transferable, plasmid-mediated quinolone-resistance determinant qnrA1 was in 1998. Since then, qnr alleles have been discovered worldwide in clinical strains of Gram-negative bacilli. Qnr proteins confer quinolone resistance, and belong to the pentapeptide repeat protein (PRP) family. Several PRP crystal structures have been solved, but little is known about the functional significance of their structural arrangement.  相似文献   

19.

Background  

Since many of the new protein structures delivered by high-throughput processes do not have any known function, there is a need for structure-based prediction of protein function. Protein 3D structures can be clustered according to their fold or secondary structures to produce classes of some functional significance. A recent alternative has been to detect specific 3D motifs which are often associated to active sites. Unfortunately, there are very few known 3D motifs, which are usually the result of a manual process, compared to the number of sequential motifs already known. In this paper, we report a method to automatically generate 3D motifs of protein structure binding sites based on consensus atom positions and evaluate it on a set of adenine based ligands.  相似文献   

20.

Background  

Biological evolution conserves protein residues that are important for structure and function. Both protein stability and function often require a certain degree of structural co-operativity between spatially neighboring residues and it has previously been shown that conserved residues occur clustered together in protein tertiary structures, enzyme active sites and protein-DNA interfaces. Residues comprising protein interfaces are often more conserved compared to those occurring elsewhere on the protein surface. We investigate the extent to which conserved residues within protein-protein interfaces are clustered together in three-dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号