首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   4篇
  2021年   3篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   6篇
  2015年   4篇
  2014年   7篇
  2013年   6篇
  2012年   7篇
  2011年   1篇
  2010年   7篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2002年   6篇
  2001年   1篇
  2000年   6篇
  1999年   3篇
  1998年   9篇
  1997年   3篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1982年   1篇
  1962年   1篇
  1956年   1篇
  1948年   1篇
  1930年   1篇
  1916年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
31.
We analyze the impact of birth seasonality (seasonal oscillations in the birth rate) on the dynamics of acute, immunizing childhood infectious diseases. Previous research has explored the effect of human birth seasonality on infectious disease dynamics using parameters appropriate for the developed world. We build on this work by including in our analysis an extended range of baseline birth rates and amplitudes, which correspond to developing world settings. Additionally, our analysis accounts for seasonal forcing both in births and contact rates. We focus in particular on the dynamics of measles. In the absence of seasonal transmission rates or stochastic forcing, for typical measles epidemiological parameters, birth seasonality induces either annual or biennial epidemics. Changes in the magnitude of the birth fluctuations (birth amplitude) can induce significant changes in the size of the epidemic peaks, but have little impact on timing of disease epidemics within the year. In contrast, changes to the birth seasonality phase (location of the peak in birth amplitude within the year) significantly influence the timing of the epidemics. In the presence of seasonality in contact rates, at relatively low birth rates (20 per 1000), birth amplitude has little impact on the dynamics but does have an impact on the magnitude and timing of the epidemics. However, as the mean birth rate increases, both birth amplitude and phase play an important role in driving the dynamics of the epidemic. There are stronger effects at higher birth rates.  相似文献   
32.

Background

China has the highest incidence of hemorrhagic fever with renal syndrome (HFRS) worldwide. Reported cases account for 90% of the total number of global cases. By 2010, approximately 1.4 million HFRS cases had been reported in China. This study aimed to explore the effect of the rodent reservoir, and natural and socioeconomic variables, on the transmission pattern of HFRS.

Methodology/Principal Findings

Data on monthly HFRS cases were collected from 2006 to 2010. Dynamic rodent monitoring data, normalized difference vegetation index (NDVI) data, climate data, and socioeconomic data were also obtained. Principal component analysis was performed, and the time-lag relationships between the extracted principal components and HFRS cases were analyzed. Polynomial distributed lag (PDL) models were used to fit and forecast HFRS transmission. Four principal components were extracted. Component 1 (F1) represented rodent density, the NDVI, and monthly average temperature. Component 2 (F2) represented monthly average rainfall and monthly average relative humidity. Component 3 (F3) represented rodent density and monthly average relative humidity. The last component (F4) represented gross domestic product and the urbanization rate. F2, F3, and F4 were significantly correlated, with the monthly HFRS incidence with lags of 4 months (r = −0.289, P<0.05), 5 months (r = −0.523, P<0.001), and 0 months (r = −0.376, P<0.01), respectively. F1 was correlated with the monthly HFRS incidence, with a lag of 4 months (r = 0.179, P = 0.192). Multivariate PDL modeling revealed that the four principal components were significantly associated with the transmission of HFRS.

Conclusions

The monthly trend in HFRS cases was significantly associated with the local rodent reservoir, climatic factors, the NDVI, and socioeconomic conditions present during the previous months. The findings of this study may facilitate the development of early warning systems for the control and prevention of HFRS and similar diseases.  相似文献   
33.
Outbreaks of avian influenza in poultry can be devastating, yet many of the basic epidemiological parameters have not been accurately characterised. In 1999–2000 in Northern Italy, outbreaks of H7N1 low pathogenicity avian influenza virus (LPAI) were followed by the emergence of H7N1 highly pathogenic avian influenza virus (HPAI). This study investigates the transmission dynamics in turkeys of representative HPAI and LPAI H7N1 virus strains from this outbreak in an experimental setting, allowing direct comparison of the two strains. The fitted transmission rates for the two strains are similar: 2.04 (1.5–2.7) per day for HPAI, 2.01 (1.6–2.5) per day for LPAI. However, the mean infectious period is far shorter for HPAI (1.47 (1.3–1.7) days) than for LPAI (7.65 (7.0–8.3) days), due to the rapid death of infected turkeys. Hence the basic reproductive ratio, is significantly lower for HPAI (3.01 (2.2–4.0)) than for LPAI (15.3 (11.8–19.7)). The comparison of transmission rates and are critically important in relation to understanding how HPAI might emerge from LPAI. Two competing hypotheses for how transmission rates vary with population size are tested by fitting competing models to experiments with differing numbers of turkeys. A model with frequency-dependent transmission gives a significantly better fit to experimental data than density-dependent transmission. This has important implications for extrapolating experimental results from relatively small numbers of birds to the commercial poultry flock size, and for how control, including vaccination, might scale with flock size.  相似文献   
34.
The global reduction of the burden of morbidity and mortality owing to measles has been a major triumph of public health. However, the continued persistence of measles infection probably not only reflects local variation in progress towards vaccination target goals, but may also reflect local variation in dynamic processes of transmission, susceptible replenishment through births and stochastic local extinction. Dynamic models predict that vaccination should increase the mean age of infection and increase inter-annual variability in incidence. Through a comparative approach, we assess national-level patterns in the mean age of infection and measles persistence. We find that while the classic predictions do hold in general, the impact of vaccination on the age distribution of cases and stochastic fadeout are mediated by local birth rate. Thus, broad-scale vaccine coverage goals are unlikely to have the same impact on the interruption of measles transmission in all demographic settings. Indeed, these results suggest that the achievement of further measles reduction or elimination goals is likely to require programmatic and vaccine coverage goals that are tailored to local demographic conditions.  相似文献   
35.
Since the discovery of a power law scaling between the mean and variance of natural populations, this phenomenon has been observed for a variety of species. Here, we show that the same form of power law scaling also occurs in measles case reports in England and Wales. Remarkably this power law holds over four orders of magnitude. We consider how the natural experiment of vaccination affects the slope of the power law. By examining simple generic models, we are able to predict the effects of stochasticity and coupling and we propose a new phenomenon associated with the critical community size.  相似文献   
36.
An understanding of within-host dynamics of pathogen interactions with eukaryotic cells can shape the development of effective preventive measures and drug regimes. Such investigations have been hampered by the difficulty of identifying and observing directly, within live tissues, the multiple key variables that underlay infection processes. Fluorescence microscopy data on intracellular distributions of Salmonella enterica serovar Typhimurium (S. Typhimurium) show that, while the number of infected cells increases with time, the distribution of bacteria between cells is stationary (though highly skewed). Here, we report a simple model framework for the intensity of intracellular infection that links the quasi-stationary distribution of bacteria to bacterial and cellular demography. This enables us to reject the hypothesis that the skewed distribution is generated by intrinsic cellular heterogeneities, and to derive specific predictions on the within-cell dynamics of Salmonella division and host-cell lysis. For within-cell pathogens in general, we show that within-cell dynamics have implications across pathogen dynamics, evolution, and control, and we develop novel generic guidelines for the design of antibacterial combination therapies and the management of antibiotic resistance.  相似文献   
37.
Models for the diversity and evolution of pathogens have branched into two main directions: the adaptive dynamics of quantitative life-history traits (notably virulence) and the maintenance and invasion of multiple, antigenically diverse strains that interact with the host's immune memory. In a first attempt to reconcile these two approaches, we developed a simple modelling framework where two strains of pathogens, defined by a pair of life-history traits (infectious period and infectivity), interfere through a given level of cross-immunity. We used whooping cough as a potential example, but the framework proposed here could be applied to other acute infectious diseases. Specifically, we analysed the effects of these parameters on the invasion dynamics of one strain into a population, where the second strain is endemic. Whereas the deterministic version of the model converges towards stable coexistence of the two strains in most cases, stochastic simulations showed that transient epidemic dynamics can cause the extinction of either strain. Thus ecological dynamics, modulated by the immune parameters, eventually determine the adaptive value of different pathogen genotypes. We advocate an integrative view of pathogen dynamics at the crossroads of immunology, epidemiology and evolution, as a way towards efficient control of infectious diseases.  相似文献   
38.

Background

Norovirus (NoV) transmission may be impacted by changes in symptom intensity. Sudden onset of vomiting, which may cause an initial period of hyper-infectiousness, often marks the beginning of symptoms. This is often followed by: a 1–3 day period of milder symptoms, environmental contamination following vomiting, and post-symptomatic shedding that may result in transmission at progressively lower rates. Existing models have not included time-varying infectiousness, though representing these features could add utility to models of NoV transmission.

Methods

We address this by comparing the fit of three models (Models 1–3) of NoV infection to household transmission data from a 2009 point-source outbreak of GII.12 norovirus in North Carolina. Model 1 is an SEIR compartmental model, modified to allow Gamma-distributed sojourn times in the latent and infectious classes, where symptomatic cases are uniformly infectious over time. Model 2 assumes infectiousness decays exponentially as a function of time since onset, while Model 3 is discontinuous, with a spike concentrating 50% of transmissibility at onset. We use Bayesian data augmentation techniques to estimate transmission parameters for each model, and compare their goodness of fit using qualitative and quantitative model comparison. We also assess the robustness of our findings to asymptomatic infections.

Results

We find that Model 3 (initial spike in shedding) best explains the household transmission data, using both quantitative and qualitative model comparisons. We also show that these results are robust to the presence of asymptomatic infections.

Conclusions

Explicitly representing explosive NoV infectiousness at onset should be considered when developing models and interventions to interrupt and prevent outbreaks of norovirus in the community. The methods presented here are generally applicable to the transmission of pathogens that exhibit large variation in transmissibility over an infection.  相似文献   
39.
For vaccine-preventable infections, immunization generally needs to be supplemented by palliative care of individuals missed by the vaccination. Costs and availability of vaccine doses and palliative care vary by disease and by region. In many situations, resources for delivery of palliative care are independent of resources required for vaccination; however we also need to consider the conservative scenario where there is some trade-off between efforts, which is of potential relevance for resource-poor settings. We formulate an SEIR model that includes those two control strategies - vaccination and palliative care. We consider their relative merit and optimal allocation in the context of a highly efficacious vaccine, and under the assumption that palliative care may reduce transmission. We investigate the utility of a range of mixed or pure strategies that can be implemented after an epidemic has started, and look for rule-of-thumb principles of how best to reduce the burden of disease during an acute outbreak over a spectrum of vaccine-preventable infections. Intuitively, we expect the best strategy to initially focus on vaccination, and enhanced palliative care after the infection has peaked, but a number of plausible realistic constraints for control result in important qualifications on the intervention strategy. The time in the epidemic when one should switch strategy depends sensitively on the relative cost of vaccine to palliative care, the available budget, and [Formula: see text]. Crucially, outbreak response vaccination may be more effective in managing low-[Formula: see text] diseases, while high [Formula: see text] scenarios enhance the importance of routine vaccination and case management.  相似文献   
40.

Background

Use of cholera vaccines in response to epidemics (reactive vaccination) may provide an effective supplement to traditional control measures. In Haiti, reactive vaccination was considered but, until recently, rejected in part due to limited global supply of vaccine. Using Bissau City, Guinea-Bissau as a case study, we explore neighborhood-level transmission dynamics to understand if, with limited vaccine and likely delays, reactive vaccination can significantly change the course of a cholera epidemic.

Methods and Findings

We fit a spatially explicit meta-population model of cholera transmission within Bissau City to data from 7,551 suspected cholera cases from a 2008 epidemic. We estimated the effect reactive vaccination campaigns would have had on the epidemic under different levels of vaccine coverage and campaign start dates. We compared highly focused and diffuse strategies for distributing vaccine throughout the city. We found wide variation in the efficiency of cholera transmission both within and between areas of the city. “Hotspots”, where transmission was most efficient, appear to drive the epidemic. In particular one area, Bandim, was a necessary driver of the 2008 epidemic in Bissau City. If vaccine supply were limited but could have been distributed within the first 80 days of the epidemic, targeting vaccination at Bandim would have averted the most cases both within this area and throughout the city. Regardless of the distribution strategy used, timely distribution of vaccine in response to an ongoing cholera epidemic can prevent cases and save lives.

Conclusions

Reactive vaccination can be a useful tool for controlling cholera epidemics, especially in urban areas like Bissau City. Particular neighborhoods may be responsible for driving a city''s cholera epidemic; timely and targeted reactive vaccination at such neighborhoods may be the most effective way to prevent cholera cases both within that neighborhood and throughout the city.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号