首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1159篇
  免费   161篇
  2021年   23篇
  2020年   5篇
  2019年   10篇
  2018年   18篇
  2017年   14篇
  2016年   17篇
  2015年   32篇
  2014年   48篇
  2013年   50篇
  2012年   63篇
  2011年   52篇
  2010年   39篇
  2009年   34篇
  2008年   56篇
  2007年   62篇
  2006年   75篇
  2005年   51篇
  2004年   72篇
  2003年   55篇
  2002年   44篇
  2001年   63篇
  2000年   55篇
  1999年   42篇
  1998年   19篇
  1997年   11篇
  1996年   14篇
  1995年   20篇
  1994年   19篇
  1993年   11篇
  1992年   32篇
  1991年   23篇
  1990年   26篇
  1989年   20篇
  1988年   14篇
  1987年   13篇
  1986年   8篇
  1985年   10篇
  1984年   10篇
  1983年   4篇
  1982年   9篇
  1981年   6篇
  1980年   5篇
  1979年   11篇
  1978年   9篇
  1977年   13篇
  1975年   4篇
  1973年   3篇
  1971年   5篇
  1969年   3篇
  1966年   3篇
排序方式: 共有1320条查询结果,搜索用时 15 毫秒
111.
112.
Different beta(1) integrins bind Arg-Gly-Asp (RGD) peptides with differing specificities, suggesting a role for residues in the alpha subunit in determining ligand specificity. Integrin alpha(5)beta(1) has been shown to bind with high affinity to peptides containing an Arg-Gly-Asp-Gly-Trp (RGDGW) sequence but with relatively low affinity to other RGD peptides. The residues within the ligand-binding pocket that determine this specificity are currently unknown. A cyclic peptide containing the RGDGW sequence was found to strongly perturb the binding of the anti-alpha(5) monoclonal antibody (mAb) 16 to alpha(5)beta(1). In contrast, RGD peptides lacking the tryptophan residue acted as weak inhibitors of mAb 16 binding. The epitope of mAb 16 has previously been localized to a region of the alpha(5) subunit that contains Ser(156)-Trp(157). Mutation of Trp(157) (but not of Ser(156) or surrounding residues) to alanine blocked recognition of mAb 16 and perturbed the high affinity binding of RGDGW-containing peptides to alpha(5)beta(1). The same mutation also abrogated recognition of the alpha(5)beta(1)-specific ligand peptide Arg-Arg-Glu-Thr-Ala-Trp-Ala (RRETAWA). Based on these findings, we propose that Trp(157) of alpha(5) participates in a hydrophobic interaction with the tryptophan residue in RGDGW, and that this interaction determines the specificity of alpha(5)beta(1) for RGDGW-containing peptides. Since the RGD sequence is recognized predominantly by amino acid residues on the beta(1) subunit, our results suggest that Trp(157) of alpha(5) must lie very close to these residues. Our findings therefore provide new insights into the structure of the ligand-binding pocket of alpha(5)beta(1).  相似文献   
113.
Zhang YW  Yasui N  Kakazu N  Abe T  Takada K  Imai S  Sato M  Nomura S  Ochi T  Okuzumi S  Nogami H  Nagai T  Ohashi H  Ito Y 《Gene》2000,244(1-2):21-28
Cleidocranial dysplasia (CCD) is an autosomal dominant human bone disease whose genetic locus has been located on chromosome 6p21, where the PEBP2alphaA/CBFA1 gene essential for osteogenesis also maps. Previously, several heterozygous mutations in PEBP2alphaA/CBFA1 were found in CCD patients. In this study, we identified six different types of mutations in PEBP2alphaA/CBFA1 in Japanese CCD patients. Four cases were similar to those reported previously: two were nonsense mutations in the Runt domain, one was a hemizygous deletion, and the other was a missense mutation in the Runt domain which abolished the DNA-binding activity of Runx2/PEBP2alphaA/CBFA1. The remaining two mutations were novel: one had a heterozygous gt-to-tt mutation at the splice donor site (gt) between the exon3-intron junction, which resulted in abnormal exon3 skipping, and the other had a mutation in exon7, which led to the introduction of a translational stop codon in the middle of the transactivation domain. Thus, defects in either the DNA-binding domain or transactivation domain of Runx2/PEBP2alphaA/CBFA1 can cause CCD. The results not only provide a strong genetic evidence that mutations involving in PEBP2alphaA/CBFA1 contribute to CCD, but also provide a useful tool to study how Runx2/PEBP2alphaA/CBFA1 plays its pivotal role during osteoblastic differentiation.  相似文献   
114.
Some natural acetogenins are the most potent inhibitors of bovine heart mitochondrial complex I. These compounds are characterized by two functional units (i.e. hydroxylated tetrahydrofuran (THF) and alpha,beta-unsaturated gamma-lactone ring moieties) separated by a long alkyl spacer. To elucidate which structural factors of acetogenins including their active conformation are crucial for the potent inhibitory effect, we synthesized a series of novel acetogenin analogues possessing bis-THF rings. The present study clearly demonstrated that the natural gamma-lactone ring is not crucial for the potent inhibition, although this moiety is the most common structural unit among a large number of natural acetogenins and has been suggested to be the only reactive species that directly interacts with the enzyme (Shimada et al., Biochemistry 37 (1998) 854-866). The presence of free hydroxy group(s) in the adjacent bis-THF rings was favorable, but not essential, for the potent activity. This was probably because high polarity (or hydrophilicity), rather than hydrogen bond-donating ability, around the bis-THF rings is required to retain the inhibitor in the active conformation. Interestingly, length of the alkyl spacer proved to be a very important structural factor for the potent activity, the optimal length being approximately 13 carbon atoms. The present study provided further strong evidence for the previous proposal (Kuwabara et al., Eur. J. Biochem. 267 (2000) 2538-2546) that the gamma-lactone and THF ring moieties act in a cooperative manner on complex I with the support of some specific conformation of the spacer.  相似文献   
115.
Activation of caspases is commonly involved in the apoptosis induced by various anticancer drugs. However, the upstream events leading to the activation of caspases seem to be specific to each anticancer drug. In the present study, we examined the possible involvement of protein kinase C (PKC) and ceramide generation in caspase-3(-like) protease activation induced by inostamycin, a phosphatidylinositol synthesis inhibitor. Treatment of cells with 12-O-tetradecanoyl phorbol-13-acetate (TPA), an activator of PKC, suppressed the release of cytochrome c from mitochondria and the activation of caspase-3(-like) proteases in inostamycin-treated cells, but not in other anticancer drug-treated cells. Inostamycin induced the elevation of intracellular ceramide levels, and fumonisin B1, an inhibitor of ceramide synthase, inhibited inostamycin-induced cytochrome c release, caspase-3(-like) protease activation, and apoptosis. Moreover, TPA also inhibited inostamycin-induced ceramide synthesis. Taken together, our results suggest that inostamycin-induced apoptosis is mediated by PKC-regulated ceramide generation, leading to the activation of a caspase cascade.  相似文献   
116.
Self-incompatibility (SI) enables flowering plants to discriminate between self- and non-self-pollen. In Brassica, SI is controlled by the highly polymorphic S locus. The recently identified male determinant, termed SP11 or SCR, is thought to be the ligand of S receptor kinase, the female determinant. To examine functional and evolutionary properties of SP11, we cloned 14 alleles from class-I S haplotypes of Brassica campestris and carried out sequence analyses. The sequences of mature SP11 proteins are highly divergent, except for the presence of conserved cysteines. The phylogenetic trees suggest possible co-evolution of the genes encoding the male and female determinants.  相似文献   
117.
Ebola virus contains a single glycoprotein (GP) that is responsible for receptor binding and membrane fusion and is proteolytically cleaved into disulfide-linked GP1 and GP2 subunits. The GP2 subunit possesses a coiled-coil motif, which plays an important role in the oligomerization and fusion activity of other viral GPs. To determine the functional significance of the coiled-coil motif of GP2, we examined the effects of peptides corresponding to the coiled-coil motif of GP2 on the infectivity of a mutant vesicular stomatitis virus (lacking the receptor-binding/fusion protein) pseudotyped with the Ebola virus GP. A peptide corresponding to the C-terminal helix reduced the infectivity of the pseudotyped virus. We next introduced alanine substitutions into hydrophobic residues in the coiled-coil motif to identify residues important for GP function. None of the substitutions affected GP oligomerization, but some mutations, two in the N-terminal helix and all in the C-terminal helix, reduced the ability of GP to confer infectivity to the mutant vesicular stomatitis virus without affecting the transport of GP to the cell surface, its incorporation into virions, and the production of virus particles. These results indicate that the coiled-coil motif of GP2 plays an important role in facilitating the entry of Ebola virus into host cells and that peptides corresponding to this region could act as efficient antiviral agents.  相似文献   
118.
119.
120.
Novel fusapyrone analogs, deoxyneofusapyrone and 7-desmethyldeoxyneofusapyrone were isolated from a pathogenic fungus, Verticillium dahliae, which causes Verticillium wilt disease in Helianthus annuus. Spectral analyses revealed that these are 2-pyrone type analogs of deoxyfusapyrone and its 7-desmethyl derivative, respectively. Biological assay disclosed that 10 μg of deoxyneofusapyrone inhibited the growth of MRSA clinical isolate 87-7927.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号