首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   52篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   13篇
  2020年   24篇
  2019年   12篇
  2018年   29篇
  2017年   20篇
  2016年   19篇
  2015年   24篇
  2014年   20篇
  2013年   29篇
  2012年   44篇
  2011年   31篇
  2010年   20篇
  2009年   15篇
  2008年   15篇
  2007年   22篇
  2006年   15篇
  2005年   13篇
  2004年   12篇
  2003年   12篇
  2002年   7篇
  2001年   4篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   4篇
  1994年   2篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1983年   1篇
  1980年   1篇
排序方式: 共有439条查询结果,搜索用时 234 毫秒
91.
Chronic hepatic encephalopathy (CHE) is a major complication in patients with severe liver disease. Elevated blood and brain ammonia levels have been implicated in its pathogenesis, and astrocytes are the principal neural cells involved in this disorder. Since defective synthesis and release of astrocytic factors have been shown to impair synaptic integrity in other neurological conditions, we examined whether thrombospondin‐1 (TSP‐1), an astrocytic factor involved in the maintenance of synaptic integrity, is also altered in CHE. Cultured astrocytes were exposed to ammonia (NH4Cl, 0.5–2.5 mM) for 1–10 days, and TSP‐1 content was measured in cell extracts and culture media. Astrocytes exposed to ammonia exhibited a reduction in intra‐ and extracellular TSP‐1 levels. Exposure of cultured neurons to conditioned media from ammonia‐treated astrocytes showed a decrease in synaptophysin, PSD95, and synaptotagmin levels. Conditioned media from TSP‐1 over‐expressing astrocytes that were treated with ammonia, when added to cultured neurons, reversed the decline in synaptic proteins. Recombinant TSP‐1 similarly reversed the decrease in synaptic proteins. Metformin, an agent known to increase TSP‐1 synthesis in other cell types, also reversed the ammonia‐induced TSP‐1 reduction. Likewise, we found a significant decline in TSP‐1 level in cortical astrocytes, as well as a reduction in synaptophysin content in vivo in a rat model of CHE. These findings suggest that TSP‐1 may represent an important therapeutic target for CHE.

  相似文献   

92.
The potential cellular function of the 53-kDa cytosolic form of PINK1 (PINK1-53) is often overlooked because of its rapid degradation by the proteasome upon its production. Although a number of recent studies have suggested various roles for PINK1-53, how this labile PINK1 species attains an adequate expression level to fulfil these roles remains unclear. Here we demonstrated that PINK1-53 is stabilized in the presence of enhanced Lys-63-linked ubiquitination and identified TRAF6-related NF-κB activation as a novel pathway involved in this. We further showed that a mimetic of PINK1-53 promotes mitophagy but, curiously, in apparently healthy mitochondria. We speculate that this “non-selective” form of mitophagy may potentially help to counteract the build-up of reactive oxygen species in cells undergoing oxidative stress and, as such, represent a cytoprotective response.  相似文献   
93.
94.
95.
Nickel‐rich layered oxide cathodes with the composition LiNi1?x?yCoxMnyO2 (NCM, (1?x?y) ≥ 0.6) are under intense scrutiny recently to contend with commercial LiNi0.8Co0.15Al0.05O2 (NCA) for high‐energy‐density batteries for electric vehicles. However, a comprehensive assessment of their electrochemical durability is currently lacking. Herein, two in‐house cathodes, LiNi0.8Co0.15Al0.05O2 and LiNi0.7Co0.15Mn0.15O2, are investigated in a high‐voltage graphite full cell over 1500 charge‐discharge cycles (≈5–10 year service life in vehicles). Despite a lower nickel content, NCM shows more performance deterioration than NCA. Critical underlying degradation processes, including chemical, structural, and mechanical aspects, are analyzed via an arsenal of characterization techniques. Overall, Mn substitution appears far less effective than Al in suppressing active mass dissolution and irreversible phase transitions of the layered oxide cathodes. The active mass dissolution (and crossover) accelerates capacity decline with sustained parasitic reactions on the graphite anode, while the phase transitions are primarily responsible for cell resistance increase and voltage fade. With Al doping, on the other hand, secondary particle pulverization is the more limiting factor for long‐term cyclability compared to Mn. These results establish a fundamental guideline for designing high‐performing Ni‐rich NCM cathodes as a compelling alternative to NCA and other compositions for electric vehicle applications.  相似文献   
96.
97.
98.
The aim of this study was to investigate the role of macrophage polarization in aging heart. Macrophage differentiation is pathogenically linked to many inflammatory and immune disorders. It is often preceded by myocardial inflammation, which is characterized by increased cardiac damage and pro-inflammatory cytokine levels. Therefore, we investigated the hypothesis that senescence accelerated-prone (SAMP8) mice cardiac tissue would develop macrophage polarization compared with senescence-resistant control (SAMR1) mice. Both SAMP8 and SAMR1 mice were sacrificed when they became six month old. We evaluated, histo-pathological changes and modifications in protein expression by Western blotting and immuno-histochemical staining for M1 and M2 macrophage markers, high mobility group protein (HMG)B1 and its cascade proteins, pro-inflammatory factors and inflammatory cytokines in cardiac tissue. We observed significant upregulation of HMGB1, toll-like receptor (TLR)2, TLR4, nuclear factor (NF)κB p65, tumor necrosis factor (TNF)α, cyclooxygenase (COX)2, interferon (IFN)γ, interleukin (IL)-1β, IL-6 and M1 like macrophage specific marker cluster of differentiation (CD)68 expressions in SAMP8 heart. In contrast, M2 macrophage specific marker CD36, and IL-10 expressions were down-regulated in SAMP8 mice. The results from the study demonstrated that, HMGB1-TLR2/TLR4 signaling cascade and induction of phenotypic switching to M1 macrophage polarization in SAMP8 mice heart would be one of the possible reasons behind the cardiac dysfunction and thus it could become an important therapeutic target to improve the age related cardiac dysfunction.  相似文献   
99.
The World Health Organization (WHO) currently coordinates rotavirus diarrhea and invasive bacterial disease (IBD) surveillance at 178 sentinel sites in 60 countries. However, only 78 sites participate in both surveillance systems using a common sentinel site. Here, we explored the feasibility of extending a WHO-IBD surveillance platform to generate data on the burden of rotaviral diarrhea and its epidemiological characteristics to prepare the countries to measure the impact of rotaviral vaccine. A six-month (July to December, 2012) surveillance, managed by IBD team, collected stool samples and clinical data from under-five children with acute watery diarrhea at an IBD sentinel site. Samples were tested for rotavirus antigen by ELISA and genotyped by PCR at the regional reference laboratory (RRL). Specimens were collected from 79% (n = 297) of eligible cases (n = 375); 100% of which were tested for rotavirus by ELISA and 54% (159/297) of them were positive. At RRL, all the cases were confirmed by PCR and genotyped (99%; 158/159). The typing results revealed the predominance of G12 (40%; 64/159) genotype, followed by G1 (31%; 50/159) and G9 (19%; 31/159). All in all, this exploratory surveillance collected the desired demographic and epidemiological data and achieved almost all the benchmark indicators of WHO, starting from enrollment number to quality assurance through a number of case detection, collection, and testing of specimens and genotyping of strains at RRL. The success of this WHO-IBD site in achieving these benchmark indicators of WHO can be used by WHO as a proof-of-concept for considering integration of rotavirus surveillance with WHO-IBD platforms, specifically in countries with well performing IBD site and no ongoing rotavirus surveillance.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号