首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1063篇
  免费   72篇
  2023年   2篇
  2022年   2篇
  2021年   16篇
  2020年   9篇
  2019年   10篇
  2018年   13篇
  2017年   19篇
  2016年   34篇
  2015年   53篇
  2014年   63篇
  2013年   72篇
  2012年   105篇
  2011年   104篇
  2010年   64篇
  2009年   56篇
  2008年   81篇
  2007年   66篇
  2006年   46篇
  2005年   70篇
  2004年   66篇
  2003年   46篇
  2002年   44篇
  2001年   13篇
  2000年   7篇
  1999年   8篇
  1998年   11篇
  1997年   7篇
  1996年   3篇
  1995年   4篇
  1994年   8篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1964年   1篇
  1940年   1篇
排序方式: 共有1135条查询结果,搜索用时 171 毫秒
111.
TLRs discriminate foreign from self via their specificity for pathogen-derived invariant ligands, an example being TLR9 recognizing bacterial unmethylated CpG motifs. In this study we report that endosomal translocation of CpG DNA via the natural endocytotic pathway is inefficient and highly saturable, whereas endosomal translocation of DNA complexed to the cationic lipid N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methylsulfate (DOTAP) is not. Interestingly, DOTAP-mediated enhanced endosomal translocation of otherwise nonstimulatory vertebrate DNA or of certain noncanonical CpG motifs triggers robust dendritic cell activation in terms of both up-regulation of CD40/CD69 and cytokine production, such as type I IFN and IL-6. We report that the stimulatory activity of phosphorothioated noncanonical CpG oligodeoxynucleotides is TLR9 dependent, whereas phosphodiester DNA, such as vertebrate DNA, in addition trigger TLR9-independent pathways. We propose that the inefficiency of the natural route for DNA internalization hinders low affinity TLR9 ligands in endosomes to reach threshold concentrations required for TLR9 activation. Endosomal compartmentalization of TLR9 may thus reflect an evolutionary strategy to avoid TLR9 activation by self-DNA.  相似文献   
112.
Macrophages (MF) are the final host cells for multiplication of the intracellular parasite Leishmania major (L. major). However, polymorphonuclear neutrophil granulocytes (PMN), not MF, are the first leukocytes that migrate to the site of infection and encounter the parasites. Our previous studies indicated that PMN phagocytose but do not kill L. major. Upon infection with Leishmania, apoptosis of human PMN is delayed and takes 2 days to occur. Infected PMN were found to secrete high levels of the chemokine MIP-1beta, which attracts MF. In this study, we investigated whether MF can ingest parasite-infected PMN. We observed that MF readily phagocytosed infected apoptotic PMN. Leishmania internalized by this indirect way survived and multiplied in MF. Moreover, ingestion of apoptotic infected PMN resulted in release of the anti-inflammatory cytokine TGF-beta by MF. These data indicate that Leishmania can misuse granulocytes as a "Trojan horse" to enter their final host cells "silently" and unrecognized.  相似文献   
113.
The membrane protein T cell immune response cDNA 7 (TIRC7) was recently identified and was shown to play an important role in T cell activation. To characterize the function of TIRC7 in more detail, we generated TIRC7-deficient mice by gene targeting. We observed disturbed T and B cell function both in vitro and in vivo in TIRC7(-/-) mice. Histologically, primary and secondary lymphoid organs showed a mixture of hypo-, hyper-, and dysplastic changes of multiple lymphohemopoietic compartments. T cells from TIRC7(-/-) mice exhibited significantly increased proliferation and expression of IL-2, IFN-gamma, and IL-4 in response to different stimuli. Resting T cells from TIRC7(-/-) mice exhibited decreased CD62L, but increased CD11a and CD44 expression, suggesting an in vivo expansion of memory/effector T cells. Remarkably, activated T cells from TIRC7(-/-) mice expressed lower levels of CTLA-4 in comparison with wild-type cells. B cells from TIRC7-deficient mice exhibited significantly higher in vitro proliferation following stimulation with anti-CD40 Ab or LPS plus IL-4. B cell hyperreactivity was reflected in vivo by elevated serum levels of various Ig classes and higher CD86 expression on B cells. Furthermore, TIRC7 deficiency resulted in an augmented delayed-type hypersensitivity response that was also reflected in increased mononuclear infiltration in the skin obtained from TIRC7-deficient mice food pads. In summary, the data strongly support an important role for TIRC7 in regulating both T and B cell responses.  相似文献   
114.
The nervous system is frequently the site of symptomatic toxicity of antineoplastic agents. However, there is limited information about the differential vulnerability of neurons, astrocytes and glioma cells. We have analyzed the effects of four chemotherapeutic drugs (lomustine, cisplatin, topotecan and vincristine) on primary cerebellar granule neurons and astrocytes derived from rats. All drugs led to cell death in cerebellar granule neurons in a concentration-dependent manner. Comparison of the EC50 values for cerebellar neurons and astrocytes with the median EC50 values of 12 malignant glioma cell lines demonstrated a large therapeutic range for lomustin and cisplatin. Further, this comparison revealed a 100-fold higher sensitivity of cerebellar neurons towards vincristine and 10-fold higher sensitivity towards topotecan compared with glioma cells. Astrocytes were generally resistant to vincristine. In cerebellar granule neurons, vincristine and to a lesser extent topotecan induced caspase 3 and caspase 9 cleavage, and enhanced caspase activity and Akt-dependent expression of phosphorylated BAD. zVAD-fmk, a caspase inhibitor and brain-derived neurotrophic factor (BDNF), but not MK-801, a non-competitive NMDA receptor antagonist, significantly reduced vincristine- or topotecan-induced cell death.  相似文献   
115.
Osmotic swelling of glial cells may contribute to the development of retinal edema. We investigated whether sex steroids inhibit the swelling of glial somata in acutely isolated retinal slices and glial cells of the rat. Superfusion of retinal slices or cells from control animals with a hypoosmolar solution did not induce glial swelling, whereas glial swelling was observed in slices of postischemic and diabetic retinas. Progesterone, testosterone, estriol, and 17ß-estradiol prevented glial swelling with half-maximal effects at approximately 0.3, 0.6, 6, and 20 μM, respectively. The effect of progesterone was apparently mediated by transactivation of metabotropic glutamate receptors, P2Y1, and adenosine A1 receptors. The data suggest that sex steroids may inhibit cytotoxic edema in the retina.  相似文献   
116.
The mitochondrial amidoxime reducing component mARC is a newly discovered molybdenum enzyme that is presumed to form the catalytical part of a three-component enzyme system, consisting of mARC, heme/cytochrome b5, and NADH/FAD-dependent cytochrome b5 reductase. mARC proteins share a significant degree of homology to the molybdenum cofactor-binding domain of eukaryotic molybdenum cofactor sulfurase proteins, the latter catalyzing the post-translational activation of aldehyde oxidase and xanthine oxidoreductase. The human genome harbors two mARC genes, referred to as hmARC-1/MOSC-1 and hmARC-2/MOSC-2, which are organized in a tandem arrangement on chromosome 1. Recombinant expression of hmARC-1 and hmARC-2 proteins in Escherichia coli reveals that both proteins are monomeric in their active forms, which is in contrast to all other eukaryotic molybdenum enzymes that act as homo- or heterodimers. Both hmARC-1 and hmARC-2 catalyze the N-reduction of a variety of N-hydroxylated substrates such as N-hydroxy-cytosine, albeit with different specificities. Reconstitution of active molybdenum cofactor onto recombinant hmARC-1 and hmARC-2 proteins in the absence of sulfur indicates that mARC proteins do not belong to the xanthine oxidase family of molybdenum enzymes. Moreover, they also appear to be different from the sulfite oxidase family, because no cysteine residue could be identified as a putative ligand of the molybdenum atom. This suggests that the hmARC proteins and sulfurase represent members of a new family of molybdenum enzymes.  相似文献   
117.
Antje Burke   《Flora》2006,201(3):189-201
This study reviewed the distribution of ten common savanna trees in Namibia. Tree distributions were investigated in relation to bioclimatic, topographic and edaphic variables at a national scale. The factors of importance at these broad geographic scales appeared to be rainfall, substrate and, likely, the incidence of frost. Baikiaea plurijuga, Burkea africana, Guibourtia coleosperma and Pterocarpus angolensis seem to reach their bioclimatic limits in Namibia.At the local level, plant traits become important and contribute to explaining distribution patterns. High water and/or nitrogen use efficiency (Acacia erioloba, Colophospermum mopane), dual water obtaining strategies (Faidherbia albida), fire tolerance (e.g. Acacia species, Burkea africana and Pterocarpus angolensis) and drought tolerance (Boscia albitrunca) are some key attributes providing additional explanations for current distributions.Amongst the selected trees and at broad geographic scales, below-ground adaptations are governed by rainfall regime in combination with coarse-textured soils, whereby shallow-rooted trees prevail in the Kalahari sandveld. Deep-rooted species are found largely on non-sandy soils. Physiological performance of many trees appears to be directly linked to rainfall regime and trees may hence show varying performance throughout their distribution range. Insight into plant functional attributes of trees in Namibia is required to develop appropriate management strategies in the light of climate change. Modelling climate change impacts should consider the relative contribution of bioclimatic versus local environmental factors that explain the current distribution patterns of the selected trees.  相似文献   
118.
FTY720 is a high-affinity agonist at the sphingosine 1-phosphate receptor 1 that prevents lymphocyte egress from lymphoid tissue and prolongs allograft survival in several animal models of solid organ transplantation. In this study we used a recently developed adoptive transfer model of TCR transgenic T cells to track allospecific CD4+ T cell expansion and trafficking characteristics, cytokine secretion profiles, and surface phenotype in vivo in the setting of FTY720 administration. We report that FTY720 administration had no effect on alloantigen-driven T cell activation, proliferation, acquisition of effector-memory function, or T cell apoptosis. However, FTY720 caused a reversible sequestration of alloantigen-specific effector-memory T cells in regional lymphoid tissue associated with a decrease in T cell infiltration within the allograft and a subsequent prolongation in allograft survival. Furthermore, delayed administration of FTY720 in a cardiac model of chronic allograft rejection attenuated the progression of vasculopathy and tissue fibrosis consistent with the hypothesis that FTY720 interrupts the trafficking of activated effector-memory T cells. These data have important implications for targeting the sphingosine 1-phosphate receptor 1 in solid organ transplantation.  相似文献   
119.
BM-40 is an extracellular matrix-associated protein and is characterized by an extracellular calcium-binding domain as well as a follistatin-like domain. Secreted modular calcium-binding protein-1 (SMOC-1) is a new member of the BM-40 family. It consists of two thyroglobulin-like domains, a follistatin-like domain and a new domain without known homologues and is expressed ubiquitously in many adult murine tissues. Immunofluorescence studies, as well as immunogold electron microscopy, have confirmed the localization of SMOC-1 in or around basement membranes of adult murine skin, blood vessels, brain, kidney, skeletal muscle, and the zona pellucida surrounding the oocyte. In the present work, light microscopic immunohistochemistry has revealed that SMOC-1 is localized in the early mouse embryo day 7 throughout the entire endodermal basement membrane zone of the embryo proper. SMOC-1 mRNA is synthesized, even in early stages of mouse development, by mesenchymal as well as epithelial cells deriving from all three germ layers. In embryonic stage day 12, and fetal stages day 14, 16, and 18, the protein is present in the basement membrane zones of brain, blood vessels, skin, skeletal muscle, lung, heart, liver, pancreas, intestine, and kidney. This broad and organ-specific distribution suggests multifunctional roles of SMOC-1 during mouse embryogenesis.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号