首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1064篇
  免费   72篇
  2023年   2篇
  2022年   3篇
  2021年   16篇
  2020年   9篇
  2019年   10篇
  2018年   13篇
  2017年   19篇
  2016年   34篇
  2015年   53篇
  2014年   63篇
  2013年   72篇
  2012年   105篇
  2011年   104篇
  2010年   64篇
  2009年   56篇
  2008年   81篇
  2007年   66篇
  2006年   46篇
  2005年   70篇
  2004年   66篇
  2003年   46篇
  2002年   44篇
  2001年   13篇
  2000年   7篇
  1999年   8篇
  1998年   11篇
  1997年   7篇
  1996年   3篇
  1995年   4篇
  1994年   8篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1964年   1篇
  1940年   1篇
排序方式: 共有1136条查询结果,搜索用时 31 毫秒
101.

Background

Marine microbial communities have been essential contributors to global biomass, nutrient cycling, and biodiversity since the early history of Earth, but so far their community distribution patterns remain unknown in most marine ecosystems.

Methodology/Principal Findings

The synthesis of 9.6 million bacterial V6-rRNA amplicons for 509 samples that span the global ocean''s surface to the deep-sea floor shows that pelagic and benthic communities greatly differ, at all taxonomic levels, and share <10% bacterial types defined at 3% sequence similarity level. Surface and deep water, coastal and open ocean, and anoxic and oxic ecosystems host distinct communities that reflect productivity, land influences and other environmental constraints such as oxygen availability. The high variability of bacterial community composition specific to vent and coastal ecosystems reflects the heterogeneity and dynamic nature of these habitats. Both pelagic and benthic bacterial community distributions correlate with surface water productivity, reflecting the coupling between both realms by particle export. Also, differences in physical mixing may play a fundamental role in the distribution patterns of marine bacteria, as benthic communities showed a higher dissimilarity with increasing distance than pelagic communities.

Conclusions/Significance

This first synthesis of global bacterial distribution across different ecosystems of the World''s oceans shows remarkable horizontal and vertical large-scale patterns in bacterial communities. This opens interesting perspectives for the definition of biogeographical biomes for bacteria of ocean waters and the seabed.  相似文献   
102.
In tumor cells, stepwise oncogenic deregulation of signaling cascades induces alterations of cellular morphology and promotes the acquisition of malignant traits. Here, we identified a set of 21 genes, including FGF9, as determinants of tumor cell morphology by an RNA interference phenotypic screen in SW480 colon cancer cells. Using a panel of small molecular inhibitors, we subsequently established phenotypic effects, downstream signaling cascades, and associated gene expression signatures of FGF receptor signals. We found that inhibition of FGF signals induces epithelial cell adhesion and loss of motility in colon cancer cells. These effects are mediated via the mitogen-activated protein kinase (MAPK) and Rho GTPase cascades. In agreement with these findings, inhibition of the MEK1/2 or JNK cascades, but not of the PI3K-AKT signaling axis also induced epithelial cell morphology. Finally, we found that expression of FGF9 was strong in a subset of advanced colon cancers, and overexpression negatively correlated with patients' survival. Our functional and expression analyses suggest that FGF receptor signals can contribute to colon cancer progression.  相似文献   
103.
104.
105.
The embryonic genome is formed by fusion of a maternal and a paternal genome. To accommodate the resulting diploid genome in the fertilized oocyte dramatic global genome reorganizations must occur. The higher order structure of chromatin in vivo is critically dependent on architectural chromatin proteins, with the family of linker histone proteins among the most critical structural determinants. Although somatic cells contain numerous linker histone variants, only one, H1FOO, is present in mouse oocytes. Upon fertilization H1FOO rapidly populates the introduced paternal genome and replaces sperm-specific histone-like proteins. The same dynamic replacement occurs upon introduction of a nucleus during somatic cell nuclear transfer. To understand the molecular basis of this dynamic histone replacement process, we compared the localization and binding dynamics of somatic H1 and oocyte-specific H1FOO and identified the molecular determinants of binding to either oocyte or somatic chromatin in living cells. We find that although both histones associate readily with chromatin in nuclei of somatic cells, only H1FOO is capable of correct chromatin association in the germinal vesicle stage oocyte nuclei. This specificity is generated by the N-terminal and globular domains of H1FOO. Measurement of in vivo binding properties of the H1 variants suggest that H1FOO binds chromatin more tightly than somatic linker histones. We provide evidence that both the binding properties of linker histones as well as additional, active processes contribute to the replacement of somatic histones with H1FOO during nuclear transfer. These results provide the first mechanistic insights into the crucial step of linker histone replacement as it occurs during fertilization and somatic cell nuclear transfer.  相似文献   
106.
107.
Respiratory chain complex I contains 8-9 iron-sulfur clusters. In several cases, the assignment of these clusters to subunits and binding motifs is still ambiguous. To test the proposed ligation of the tetranuclear iron-sulfur cluster N5 of respiratory chain complex I, we replaced the conserved histidine 129 in the 75-kDa subunit from Yarrowia lipolytica with alanine. In the mutant strain, reduced amounts of fully assembled but destabilized complex I could be detected. Deamino-NADH: ubiquinone oxidoreductase activity was abolished completely by the mutation. However, EPR spectroscopic analysis of mutant complex I exhibited an unchanged cluster N5 signal, excluding histidine 129 as a cluster N5 ligand.  相似文献   
108.
LIM kinases (LIMKs) are mainly in the cytoplasm and regulate actin dynamics through cofilin phosphorylation. Recently, it has been reported that nuclear localization of LIMKs can mediate suppression of cyclin D1 expression. Using immunofluorescence monitoring of enhanced green fluorescent protein-tagged LIMK2 in combination with photobleaching techniques and leptomycin B treatment, we demonstrate that LIMK2 shuttles between the cytoplasm and the nucleus in endothelial cells. Sequence analysis predicted two PKC phosphorylation sites in LIMK2 but not in LIMK1. One site at Ser-283 is present between the PDZ and the kinase domain, and the other site at Thr-494 is within the kinase domain. Activation of PKC by phorbol ester treatment of endothelial cells stimulated LIMK2 phosphorylation at Ser-283 and inhibited nuclear import of LIMK2 and the PDZ kinase construct of LIMK2 (amino acids 142-638) but not of LIMK1. The PKC-delta isoform phosphorylated LIMK2 at Ser-283 in vitro. Mutational analysis indicated that LIMK2 phosphorylation at Ser-283 but not Thr-494 was functional. Serum stimulation of endothelial cells also inhibited nuclear import of PDZK-LIMK2 by protein kinase C-dependent phosphorylation of Ser-283. Our study shows that phorbol ester and serum stimulation of endothelial cells inhibit nuclear import of LIMK2 but not LIMK1. This effect was dependent on PKC-delta-mediated phosphorylation of Ser-283. Since phorbol ester enhanced cyclin D1 expression and subsequent G1-to-S-phase transition of endothelial cells, we suggest that the PKC-mediated exclusion of LIMK2 from the nucleus might be a mechanism to relieve suppression of cyclin D1 expression by LIMK2.  相似文献   
109.
110.
Programmed death-1 (PD-1), an inhibitory receptor up-regulated on activated T cells, has been shown to play a critical immunoregulatory role in peripheral tolerance, but its role in alloimmune responses is poorly understood. Using a novel alloreactive TCR-transgenic model system, we examined the functions of this pathway in the regulation of alloreactive CD4+ T cell responses in vivo. PD-L1, but not PD-1 or PD-L2, blockade accelerated MHC class II-mismatched skin graft (bm12 (I-Abm12) into B6 (I-Ab)) rejection in a similar manner to CTLA-4 blockade. In an adoptive transfer model system using the recently described anti-bm12 (ABM) TCR-transgenic mice directly reactive to I-Abm12, PD-1 and PD-L1 blockade enhanced T cell proliferation early in the immune response. In contrast, at a later time point preceding accelerated allograft rejection, only PD-L1 blockade enhanced T cell proliferation. In addition, PD-L1 blockade enhanced alloreactive Th1 cell differentiation. Apoptosis of alloantigen-specific T cells was inhibited significantly by PD-L1 but not PD-1 blockade, indicating that PD-1 may not be the receptor for the apoptotic effect of the PD-L1-signaling pathway. Interestingly, the effect of PD-L1 blockade was dependent on the presence of CD4+ CD25+ regulatory T cells in vivo. These data demonstrate a critical role for the PD-1 pathway, particularly PD-1/PD-L1 interactions, in the regulation of alloimmune responses in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号