首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21734篇
  免费   1496篇
  国内免费   9篇
  2023年   112篇
  2022年   151篇
  2021年   580篇
  2020年   351篇
  2019年   470篇
  2018年   593篇
  2017年   478篇
  2016年   809篇
  2015年   1215篇
  2014年   1343篇
  2013年   1659篇
  2012年   1948篇
  2011年   1892篇
  2010年   1174篇
  2009年   1016篇
  2008年   1376篇
  2007年   1287篇
  2006年   1179篇
  2005年   1081篇
  2004年   981篇
  2003年   927篇
  2002年   751篇
  2001年   117篇
  2000年   106篇
  1999年   135篇
  1998年   125篇
  1997年   115篇
  1996年   89篇
  1995年   86篇
  1994年   90篇
  1993年   88篇
  1992年   53篇
  1991年   56篇
  1990年   62篇
  1989年   45篇
  1988年   50篇
  1987年   38篇
  1986年   42篇
  1985年   51篇
  1984年   38篇
  1983年   43篇
  1982年   32篇
  1981年   42篇
  1980年   26篇
  1979年   34篇
  1978年   31篇
  1977年   28篇
  1976年   25篇
  1975年   22篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The Schizosaccharomyces pombe septation initiation network (SIN) triggers actomyosin ring constriction, septation, and cell division. It is organized at the spindle pole body (SPB) by the scaffold proteins Sid4p and Cdc11p. Here, we dissect the contributions of Sid4p and Cdc11p in anchoring SIN components and SIN regulators to the SPB. We find that Sid4p interacts with the SIN activator, Plo1p, in addition to Cdc11p and Dma1p. While the C terminus of Cdc11p is involved in binding Sid4p, its N-terminal half is involved in a wide variety of direct protein-protein interactions, including those with Spg1p, Sid2p, Cdc16p, and Cdk1p-Cdc13p. Given that the localizations of the remaining SIN components depend on Spg1p or Cdc16p, these data allow us to build a comprehensive model of SIN component organization at the SPB. FRAP experiments indicate that Sid4p and Cdc11p are stable SPB components, whereas signaling components of the SIN are dynamically associated with these structures. Our results suggest that the Sid4p-Cdc11p complex organizes a signaling hub on the SPB and that this hub coordinates cell and nuclear division.  相似文献   
992.
Major signaling cascades have been shown to play a role in the regulation of intracellular organelle transport . Aggregation and dispersion of pigment granules in melanophores are regulated by the second messenger cAMP through the protein kinase A (PKA) signaling pathway ; however, the exact mechanisms of this regulation are poorly understood. To study the role of signaling molecules in the regulation of pigment transport in melanophores, we have asked the question whether the components of the cAMP-signaling pathway are bound to pigment granules and whether they interact with molecular motors to regulate the granule movement throughout the cytoplasm. We found that purified pigment granules contain PKA and scaffolding proteins and that PKA associates with pigment granules in cells. Furthermore, we found that the PKA regulatory subunit forms two separate complexes, one with cytoplasmic dynein ("aggregation complex") and one with kinesin II and myosin V ("dispersion complex"), and that the removal of PKA from granules causes dissociation of dynein and disruption of dynein-dependent pigment aggregation. We conclude that cytoplasmic organelles contain protein complexes that include motor proteins and signaling molecules involved in different components of intracellular transport. We propose to call such complexes 'regulated motor units' (RMU).  相似文献   
993.
Juvenile loggerhead turtles (Caretta caretta) from West Atlantic nesting beaches occupy oceanic (pelagic) habitats in the eastern Atlantic and Mediterranean, whereas larger juvenile turtles occupy shallow (neritic) habitats along the continental coastline of North America. Hence the switch from oceanic to neritic stage can involve a trans-oceanic migration. Several researchers have suggested that at the end of the oceanic phase, juveniles are homing to feeding habitats in the vicinity of their natal rookery. To test the hypothesis of juvenile homing behaviour, we surveyed 10 juvenile feeding zones across the eastern USA with mitochondrial DNA control region sequences (N = 1437) and compared these samples to potential source (nesting) populations in the Atlantic Ocean and Mediterranean Sea (N = 465). The results indicated a shallow, but significant, population structure of neritic juveniles (PhiST = 0.0088, P = 0.016), and haplotype frequency differences were significantly correlated between coastal feeding populations and adjacent nesting populations (Mantel test R2 = 0.52, P = 0.001). Mixed stock analyses (using a Bayesian algorithm) indicated that juveniles occurred at elevated frequency in the vicinity of their natal rookery. Hence, all lines of evidence supported the hypothesis of juvenile homing in loggerhead turtles. While not as precise as the homing of breeding adults, this behaviour nonetheless places juvenile turtles in the vicinity of their natal nesting colonies. Some of the coastal hazards that affect declining nesting populations may also affect the next generation of turtles feeding in nearby habitats.  相似文献   
994.
Hypertension, aging and a range of neurodegenerative diseases are associated with increased oxidative damage. The present study examined whether superoxide (O2•-) levels in brain are increased during aging in female rats, and the role of superoxide dismutase (SOD) and oestrogen in regulating O2•- levels.

Young adult (3 month) and old (11 month) female spontaneously hypertensive stroke prone rats (SHRSP) and normotensive Wistar-Kyoto rats (WKY) were studied. O2•- levels were measured in brain homogenates by lucigenin chemiluminescence and SOD expression by Western blotting. Ageing significantly increased brain O2•- levels in WKY (cortex +216%, hippocampus +320%, striatum +225%) and to a greater extent in SHRSP (cortex +540%, hippocampus +580%, striatum +533%). Older SHRSP showed a decline in cortical Cu/Zn SOD expression compared to young adult SHRSP. Oestrogen did not attenuate O2•- levels.

The results show a significant age-dependent increase in brain O2•- levels which is exaggerated in SHRSP. The excess cortical O2•- levels in the SHRSP may be associated with a down-regulation of Cu/Zn SOD but are not related to a decrease in oestrogen.  相似文献   
995.
The yeast farnesyl diphosphate synthase (FPPS) gene was engineered so as to construct allelic forms giving various activities of the enzyme. One of the substitutions was F96W in the chain length determination region. The other, K197, conserved within a consensus sequence found in the majority of FPP and GGPP synthases, was substituted by R, E and V. An intricate correlation has been found between the FPPS activity, the amount of ergosterol synthesized and cell growth of a mutant strain defective in FPPS. About 40% of wt FPPS activity was sufficient to support normal growth of the mutant. With further decline of FPPS activity (20 down to 3%) the amount of ergosterol remained unchanged at approximately 0.16% (vs dry weight), whereas growth yield decreased and lag times increased. We postulate that, in addition to ergosterol initiating and maintaining growth of yeast cells, FPP and/or its derivatives participate in these processes.  相似文献   
996.
We have previously shown that thrombin induces endothelial cell barrier dysfunction via cytoskeleton activation and contraction and have determined the important role of endothelial cell myosin light chain kinase (MLCK) in this process. In the present study we explored p38 MAP kinase as a potentially important enzyme in thrombin-mediated endothelial cell contractile response and permeability. Thrombin induces significant p38 MAP kinase activation in a time-dependent manner with maximal effect at 30 min, which correlates with increased phosphorylation of actin- and myosin-binding protein, caldesmon. Both SB-203580 and dominant negative p38 adenoviral vector significantly attenuated thrombin-induced declines in transendothelial electrical resistance. Consistent with these data SB-203580 decreased actin stress fiber formation produced by thrombin in endothelium. In addition, dominant negative p38 had no effect on thrombin-induced myosin light chain diphosphorylation. Thrombin-induced total and site-specific caldesmon phosphorylation (Ser789) as well as dissociation of caldesmon-myosin complex were attenuated by SB-203580 pretreatment. These results suggest the involvement of p38 MAP kinase activities and caldesmon phosphorylation in the MLCK-independent regulation of thrombin-induced endothelial cell permeability.  相似文献   
997.
Tandem affinity purification and identification of protein complex components   总被引:14,自引:0,他引:14  
As with the budding yeast Saccharomyces cerevisiae, the completion of the Schizosaccharomyces pombe genome sequence has opened new opportunities to investigate the functional organization of a eukaryotic cell. These include analysis of gene expression patterns, comprehensive gene knockout and synthetic lethal screens, global protein localization analysis, and direct protein interaction mapping. We describe here the tandem affinity purification or TAP approach combined with DALPC mass spectrometry to identify components of protein complexes as we have applied it to S. pombe. This approach can theoretically be applied to the entire proteome as has been done in S. cerevisiae to gain insight into functional protein assemblies and to elucidate functions of uncharacterized proteins.  相似文献   
998.
The spindle checkpoint prevents anaphase onset until all the chromosomes have successfully attached to the spindle microtubules. The mechanisms by which unattached kinetochores trigger and transmit a primary signal are poorly understood, although it seems to be dependent at least in part, on the kinetochore localization of the different checkpoint components. By using protein immunodepletion and mRNA translation in Xenopus egg extracts, we have studied the hierarchic sequence and the interdependent network that governs protein recruitment at the kinetochore in the spindle checkpoint pathway. Our results show that the first regulatory step of this cascade is defined by Aurora B/INCENP complex. Aurora B/INCENP controls the activation of a second regulatory level by inducing at the kinetochore the localization of Mps1, Bub1, Bub3, and CENP-E. This localization, in turn, promotes the recruitment to the kinetochore of Mad1/Mad2, Cdc20, and the anaphase promoting complex (APC). Unlike Aurora B/INCENP, Mps1, Bub1, and CENP-E, the downstream checkpoint protein Mad1 does not regulate the kinetochore localization of either Cdc20 or APC. Similarly, Cdc20 and APC do not require each other to be localized at these chromosome structures. Thus, at the last step of the spindle checkpoint cascade, Mad1/Mad2, Cdc20, and APC are recruited at the kinetochores independently from each other.  相似文献   
999.
1000.
The F11 receptor (F11R) (a.k.a. Junctional Adhesion Molecule, JAM) was first identified in human platelets as a 32/35 kDa protein duplex that serves as receptor for a functional monoclonal antibody that activates platelets. We have sequenced and cloned the F11R and determined that it is a member of the immunoglobulin (Ig) superfamily of cell adhesion molecules. The signaling pathways involved in F11R-induced platelet activation were examined in this investigation. The binding of M.Ab.F11 to the platelet F11R resulted in granule secretion and aggregation. These processes were found to be dependent on the crosslinking of F11R with the Fc gammaRII by M.Ab.F11. This crosslinking induced actin filament assembly with the conversion of discoidal platelets to activated shapes, leading to the formation of platelet aggregates. We demonstrate that platelet secretion and aggregation through the F11R involves actin filament assembly that is dependent on phosphoinositide-3 kinase activation, and inhibitable by wortmannin. Furthermore, such activation results in an increase in the level of free intracellular calcium, phosphorylation of the 32 and 35 kDa forms of the F11R, F11R dimerization coincident with a decrease in monomeric F11R, and association of the F11R with the integrin GPIIIa and with CD9. On the other hand, F11R-mediated events resulting from the binding of platelets to an immobilized surface of M.Ab.F11 lead to platelet adhesion and spreading through the development of filopodia and lammelipodia. These adhesive processes are induced directly by interaction of M.Ab.F11 with the platelet F11R and are not dependent on the Fc gammaRII. We also report here that the stimulation of the F11R in the presence of nonaggregating (subthreshold) concentrations of the physiological agonists thrombin and collagen, results in supersensitivity of platelets to natural agonists by a F11R-mediated process independent of the Fc gammaRII. The delineation of the two separate F11R-mediated pathways is anticipated to reveal significant information on the role of this cell adhesion molecule in platelet adhesion, aggregation and secretion, and F11R-dependent potentiation of agonist-induced platelet aggregation. The participation of F11R in the formation and growth of platelet aggregates and plaques in cardiovascular disorders, resulting in enhanced platelet adhesiveness and hyperaggregability, may serve in the generation of novel therapies in the treatment of inflammatory thrombosis, heart attack and stroke, and other cardiovascular disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号