首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   17篇
  2023年   2篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   3篇
  2014年   6篇
  2013年   9篇
  2012年   10篇
  2011年   7篇
  2010年   11篇
  2009年   4篇
  2008年   8篇
  2007年   10篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   5篇
  1999年   3篇
  1998年   4篇
  1997年   8篇
  1996年   3篇
  1995年   2篇
  1994年   6篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   6篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有188条查询结果,搜索用时 15 毫秒
21.
Despite intense research, the mechanism of Cd2+ toxicity on photosynthesis is still elusive because of the multiplicity of the inhibitory effects and different barriers in plants. The quick Cd2+ uptake in Synechocystis PCC 6803 permits the direct interaction of cadmium with the photosynthetic machinery and allows the distinction between primary and secondary effects. We show that the CO2‐dependent electron transport is rapidly inhibited upon exposing the cells to 40 µm Cd2+ (50% inhibition in ~15 min). However, during this time we observe only symptoms of photosystem I acceptor side limitation and a build of an excitation pressure on the reaction centres, as indicated by light‐induced P700 redox transients, O2 polarography and changes in chlorophyll a fluorescence parameters. Inhibitory effects on photosystem II electron transport and the degradation of the reaction centre protein D1 can only be observed after several hours, and only in the light, as revealed by chlorophyll a fluorescence transients, thermoluminescence and immunoblotting. Despite the marked differences in the manifestations of these short‐ and long‐term effects, they exhibit virtually the same Cd2+ concentration dependence. These data strongly suggest a cascade mechanism of the toxic effect, with a primary effect in the dark reactions.  相似文献   
22.

Abstact

Background

Gamma amino butyric acid (GABA), the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tones that counter balances neuronal excitation. When this balance is perturbed, seizures may ensue.

Methods

In the present study, alterations of the general GABA, GABAA and GABAB receptors in the cerebral cortex of the epileptic rat and the therapeutic application of Bacopa monnieri were investigated.

Results

Scatchard analysis of [3H]GABA, [3H]bicuculline and [3H]baclofen in the cerebral cortex of the epileptic rat showed significant decrease in Bmax (P < 0.001) compared to control. Real Time PCR amplification of GABA receptor subunits such as GABAAά1, GABA, GABA, GABAB and GAD where down regulated (P < 0.001) in epileptic rats. GABAAά5 subunit and Cyclic AMP responsible element binding protein were up regulated. Confocal imaging study confirmed the decreased GABA receptors in epileptic rats. Epileptic rats have deficit in radial arm and Y maze performance.

Conclusions

Bacopa monnieri and Bacoside-A treatment reverses epilepsy associated changes to near control suggesting that decreased GABA receptors in the cerebral cortex have an important role in epileptic occurrence; Bacopa monnieri and Bacoside-A have therapeutic application in epilepsy management.  相似文献   
23.
Arabidopsis thaliana is a plant species that accumulates high levels of organic acids and uses them as carbon, energy and reducing power sources. Among the enzymes that metabolize these compounds, one of the most important ones is malic enzyme (ME). A. thaliana contains four malic enzymes (NADP-ME 1–4) to catalyze the reversible oxidative decarboxylation of malate in the presence of NADP. NADP-ME2 is the only one located in the cell cytosol of all Arabidopsis organs providing most of the total NADP-ME activity. In the present work, the regulation of this key enzyme by fumarate was investigated by kinetic assays, structural analysis and a site-directed mutagenesis approach. The final effect of this metabolite on NADP-ME2 forward activity not only depends on fumarate and substrate concentrations but also on the pH of the reaction medium. Fumarate produced an increase in NADP-ME2 activity by binding to an allosteric site. However at higher concentrations, fumarate caused a competitive inhibition, excluding the substrate malate from binding to the active site. The characterization of ME2-R115A mutant, which is not activated by fumarate, confirms this hypothesis. In addition, the reverse reaction (reductive carboxylation of pyruvate) is also modulated by fumarate, but in a different way. The results indicate pH-dependence of the fumarate modulation with opposite behavior on the two activities analyzed. Thereby, the coordinated action of fumarate over the direct and reverse reactions would allow a precise and specific modulation of the metabolic flux through this enzyme, leading to the synthesis or degradation of C4 compounds under certain conditions. Thus, the physiological context might be exerting an accurate control of ME activity in planta, through changes in metabolite and substrate concentrations and cytosolic pH.  相似文献   
24.
Individual plants of several Amelanchier taxa contain many polymorphic nucleotide sites in the internal transcribed spacers (ITS) of nuclear ribosomal DNA (nrDNA). This polymorphism is unusual because it is not recent in origin and thus has resisted homogenization by concerted evolution. Amelanchier ITS sequence polymorphism is hypothesized to be the result of gene flow between two major North American clades resolved by phylogenetic analysis of ITS sequences. Western North American species plus A. humilis and A. sanguinea of eastern North America form one clade (A), and the remaining eastern North American Amelanchier make up clade B. Five eastern North American taxa are polymorphic at many of the nucleotide sites where clades A and B have diverged and are thought to be of hybrid origin, with A. humilis or A. sanguinea as one parent and various members of clade B as the other parent. Morphological evidence suggests that A. humilis is one of the parents of one of the polymorphic taxa, a microspecies that we refer to informally as A. "erecta." Sequences of 21 cloned copies of the ITS1- 5.8S gene-ITS2 region from one A. "erecta" individual are identical to A. humilis sequence or to the clade B consensus sequence, or they are apparent recombinants of A. humilis and clade B ITS repeats. Amelanchier "erecta" and another polymorphic taxon are suspected to be relatively old because both grow several hundred kilometers beyond the range of one of their parents. ITS sequence polymorphisms have apparently persisted in these two taxa perhaps because of polyploidy and/or agamospermy (asexual seed production), which are prevalent in the genus.   相似文献   
25.
26.
We used a nonintrusive field experiment carried out at six sites – Wales (UK), Denmark (DK), the Netherlands (NL), Hungary (HU), Sardinia (Italy – IT), and Catalonia (Spain – SP) – along a climatic and latitudinal gradient to examine the response of plant species richness and primary productivity to warming and drought in shrubland ecosystems. The warming treatment raised the plot daily temperature by ca. 1 °C, while the drought treatment led to a reduction in soil moisture at the peak of the growing season that ranged from 26% at the SP site to 82% in the NL site. During the 7 years the experiment lasted (1999–2005), we used the pin‐point method to measure the species composition of plant communities and plant biomass, litterfall, and shoot growth of the dominant plant species at each site. A significantly lower increase in the number of species pin‐pointed per transect was found in the drought plots at the SP site, where the plant community was still in a process of recovering from a forest fire in 1994. No changes in species richness were found at the other sites, which were at a more mature and stable state of succession and, thus less liable to recruitment of new species. The relationship between annual biomass accumulation and temperature of the growing season was positive at the coldest site and negative at the warmest site. The warming treatment tended to increase the aboveground net primary productivity (ANPP) at the northern sites. The relationship between annual biomass accumulation and soil moisture during the growing season was not significant at the wettest sites, but was positive at the driest sites. The drought treatment tended to reduce the ANPP in the NL, HU, IT, and SP sites. The responses to warming were very strongly related to the Gaussen aridity index (stronger responses the lower the aridity), whereas the responses to drought were not. Changes in the annual aboveground biomass accumulation, litterfall, and, thus, the ANPP, mirrored the interannual variation in climate conditions: the most outstanding change was a decrease in biomass accumulation and an increase in litterfall at most sites during the abnormally hot year of 2003. Species richness also tended to decrease in 2003 at all sites except the cold and wet UK site. Species‐specific responses to warming were found in shoot growth: at the SP site, Globularia alypum was not affected, while the other dominant species, Erica multiflora, grew 30% more; at the UK site, Calluna vulgaris tended to grow more in the warming plots, while Empetrum nigrum tended to grow less. Drought treatment decreased plant growth in several studied species, although there were some species such as Pinus halepensis at the SP site or C. vulgaris at the UK site that were not affected. The magnitude of responses to warming and drought thus depended greatly on the differences between sites, years, and species and these multiple plant responses may be expected to have consequences at ecosystem and community level. Decreases in biodiversity and the increase in E. multiflora growth at the SP site as a response to warming challenge the assumption that sensitivity to warming may be less well developed at more southerly latitudes; likewise, the fact that one of the studied shrublands presented negative ANPP as a response to the 2003 heat wave also challenges the hypothesis that future climate warming will lead to an enhancement of plant growth and carbon sequestration in temperate ecosystems. Extreme events may thus change the general trend of increased productivity in response to warming in the colder sites.  相似文献   
27.
Although the nonphotosynthetic NAD-malic enzyme (NAD-ME) was assumed to play a central role in the metabolite flux through the tricarboxylic acid cycle, the knowledge on this enzyme is still limited. Here, we report on the identification and characterization of two genes encoding mitochondrial NAD-MEs from Arabidopsis (Arabidopsis thaliana), AtNAD-ME1 and AtNAD-ME2. The encoded proteins can be grouped into the two clades found in the plant NAD-ME phylogenetic tree. AtNAD-ME1 belongs to the clade that includes known alpha-subunits with molecular masses of approximately 65 kD, while AtNAD-ME2 clusters with the known beta-subunits with molecular masses of approximately 58 kD. The separated recombinant proteins showed NAD-ME activity, presented comparable kinetic properties, and are dimers in their active conformation. Native electrophoresis coupled to denaturing electrophoresis revealed that in vivo AtNAD-ME forms a dimer of nonidentical subunits in Arabidopsis. Further support for this conclusion was obtained by reconstitution of the active heterodimer in vitro. The characterization of loss-of-function mutants for both AtNAD-MEs indicated that both proteins also exhibit enzymatic activity in vivo. Neither the single nor the double mutants showed a growth or developmental phenotype, suggesting that NAD-ME activity is not essential for normal autotrophic development. Nevertheless, metabolic profiling of plants completely lacking NAD-ME activity revealed differential patterns of modifications in light and dark periods and indicates a major role for NAD-MEs during nocturnal metabolism.  相似文献   
28.
29.
Apolipoprotein-B100 (apoB100) is the essential protein for the assembly and secretion of very low density lipoproteins (VLDL) from liver. The hepatoma HepG2 cell line has been the cell line of choice for the study of synthesis and secretion of human apoB-100. Despite the general use of HepG2 cells to study apoB100 metabolism, they secrete relatively dense, lipid-poor particles compared with VLDL secreted in vivo. Recently, Huh-7 cells were adopted as an alternative model to HepG2 cells, with the implicit assumption that Huh-7 cells were superior in some respects of lipoprotein metabolism, including VLDL secretion. In this study we addressed the hypothesis that the spectrum of apoB100 lipoprotein particles secreted by Huh-7 cells more closely resembles the native state in human liver. We find that Huh-7 cells resemble HepG2 cells in the effects of exogenous lipids, microsomal triglyceride transfer protein (MTP)-inhibition, and proteasome inhibitors of apoB100 secretion, recovery, and degradation. In contrast to HepG2 cells, however, MEK-ERK inhibition does not correct the defect in VLDL secretion. Huh-7 cells do not appear to offer any advantages over HepG2 cells as a general model of human apoB100-lipoprotein metabolism.  相似文献   
30.
Malate metabolism by NADP-malic enzyme in plant defense   总被引:8,自引:0,他引:8  
Malate is involved in various metabolic pathways, and there are several enzymes that metabolize it. One important malate metabolizing enzyme is NADP-malic enzyme (NADP-ME). NADP-ME functions in many different pathways in plants, having an important role in C4 photosynthesis where it releases the CO2 to be used in carbon fixation by Rubisco. Apart from this specialized role, NADP-ME is thought to fulfill diverse housekeeping functions because of its universal presence in different plant tissues. NADP-ME is induced after wounding or exposure to UV-B radiation. In this way, the enzyme is implicated in defense-related deposition of lignin by providing NADPH for the two NADPH-dependent reductive steps in monolignol biosynthesis. On the other hand, it can supply NADPH for flavonoid biosynthesis as many steps in the flavonoid biosynthesis pathway require reductive power. Pyruvate, another product of NADP-ME reaction, can be used for obtaining ATP through respiration in the mitochondria; and may serve as a precursor for synthesis of phosphoenolpyruvate (PEP). PEP is utilized in the shikimate pathway, leading to the synthesis of aromatic amino acids including phenylalanine, the common substrate for lignin and flavonoid synthesis. Moreover, NADP-ME can be involved in mechanisms producing NADPH for synthesis of activated oxygen species that are produced in order to kill or damage pathogens. In conclusion, an increase in the levels of NADP-ME could provide building blocks and energy for biosynthesis of defense compounds, suggesting a role of malate metabolism in plant defense.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号