首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16018篇
  免费   1276篇
  国内免费   7篇
  2024年   19篇
  2023年   87篇
  2022年   129篇
  2021年   465篇
  2020年   245篇
  2019年   314篇
  2018年   425篇
  2017年   371篇
  2016年   609篇
  2015年   883篇
  2014年   969篇
  2013年   1136篇
  2012年   1461篇
  2011年   1441篇
  2010年   904篇
  2009年   688篇
  2008年   1059篇
  2007年   941篇
  2006年   916篇
  2005年   870篇
  2004年   760篇
  2003年   640篇
  2002年   633篇
  2001年   117篇
  2000年   98篇
  1999年   116篇
  1998年   142篇
  1997年   98篇
  1996年   82篇
  1995年   60篇
  1994年   55篇
  1993年   62篇
  1992年   57篇
  1991年   44篇
  1990年   54篇
  1989年   52篇
  1988年   22篇
  1987年   26篇
  1986年   18篇
  1985年   22篇
  1984年   16篇
  1983年   16篇
  1982年   15篇
  1981年   21篇
  1980年   21篇
  1979年   17篇
  1977年   8篇
  1975年   18篇
  1974年   11篇
  1969年   8篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
171.
A multidisciplinary approach was carried out in order to study the biodeterioration and the associated microbiome of a XVIII Century wax seal coloured with minium. A small wax seal fragment was observed by scanning electron microscopy combined with energy dispersive spectroscopy in non-destructive mode. The same object was analysed by Raman and Fourier-transform infrared spectroscopy. The identification of the microbiota growing on the seal was performed with both a culture-dependent strategy, combined with hydrolytic assays, and high-throughput sequencing using the MinION platform. The whole bacterial 16S rRNA gene and the fungal markers ITS and 28S rRNA were targeted. It was observed that the carnauba wax coloured with lead tetroxide (minium) was covered by a biofilm consisting of a network of filaments and other structures of microbial origin. The culture-dependent and culture-independent investigations showed the presence of a complex microbiota composed mainly by fungal members, which demonstrated interesting properties related to lipids and lead processing. The formation of lead soaps and secondary biogenic minerals was also described.  相似文献   
172.
Plasmodium falciparum responsible for the most virulent form of malaria invades human erythrocytes through multiple ligand‐receptor interactions. The P. falciparum reticulocyte binding protein homologues (PfRHs) are expressed at the apical end of merozoites and form interactions with distinct erythrocyte surface receptors that are important for invasion. Here using a range of monoclonal antibodies (mAbs) against different regions of PfRH1 we have investigated the role of PfRH processing during merozoite invasion. We show that PfRH1 gets differentially processed during merozoite maturation and invasion and provide evidence that the different PfRH1 processing products have distinct functions during invasion. Using in‐situ Proximity Ligation and FRET assays that allow probing of interactions at the nanometre level we show that a subset of PfRH1 products form close association with micronemal proteins Apical Membrane Antigen 1 (AMA1) in the moving junction suggesting a critical role in facilitating junction formation and active invasion. Our data provides evidence that time dependent processing of PfRH proteins is a mechanism by which the parasite is able to regulate distinct functional activities of these large processes. The identification of a specific close association with AMA1 in the junction now may also provide new avenues to target these interactions to prevent merozoite invasion.  相似文献   
173.
174.
175.
From 50 to 90% of wild plant species worldwide produce seeds that are dormant upon maturity, with specific dormancy traits driven by species' occurrence geography, growth form, and genetic factors. While dormancy is a beneficial adaptation for intact natural systems, it can limit plant recruitment in restoration scenarios because seeds may take several seasons to lose dormancy and consequently show low or erratic germination. During this time, seed predation, weed competition, soil erosion, and seed viability loss can lead to plant re‐establishment failure. Understanding and considering seed dormancy and germination traits in restoration planning are thus critical to ensuring effective seed management and seed use efficiency. There are five known dormancy classes (physiological, physical, combinational, morphological, and morphophysiological), each requiring specific cues to alleviate dormancy and enable germination. The dormancy status of a seed can be determined through a series of simple steps that account for initial seed quality and assess germination across a range of environmental conditions. In this article, we outline the steps of the dormancy classification process and the various corresponding methodologies for ex situ dormancy alleviation. We also highlight the importance of record‐keeping and reporting of seed accession information (e.g. geographic coordinates of the seed collection location, cleaning and quality information, storage conditions, and dormancy testing data) to ensure that these factors are adequately considered in restoration planning.  相似文献   
176.
Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature‐dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using 13CO2‐labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil–plant–atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula. The projected temperature rise of the subarctic summer by 5°C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The 13C was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%–44% (Salix) and 60%–68% (Betula) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%–58% (Salix) and 87%–95% (Betula). Analyses of above‐ and belowground 12/13C showed shifts of C allocation in the plant–soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO2 and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems.  相似文献   
177.

The effects of non-authochtonous Enterococcus faecium AL41 = CCM 8558, enterocin M-producing and probiotic strain were tested on the microbiota, phagocytic activity, hydrolytic enzymes, biochemical parameters and dry matter in horses based on its previous benefits demonstrated in other animals. E. faecium CCM 8558 sufficiently colonized the digestive tract of horses. At day 14, its counts reached 2.35 ± 0.70 CFU/g (log 10) on average. The identity of CCM 8558 was confirmed by means of PCR after its re-isolation from horse faeces. The inhibition activity of CCM 8558 was demonstrated against Gram-negative aeromonads, counts of which were significantly reduced (P < 0.001). After 14 days application of CCM 8558, a tendency towards increased phagocytic activity (PA) was measured; PA value was 73.13% ± 8.55 on average at day 0/1; at day 14, it was 75.11 ± 8.66%. Cellulolytic, xylanolytic and pectinolytic activity in horse faeces was significantly increased (P < 0.001) at day 14 (after CCM 8558 application) and amylolytic activity as well (P < 0.01) compared to day 0/1. Inulolytic activity increased with mathematical difference 1.378. Dry matter value reached 20.81 ± 2.29% on average at day 0/1; at day 14, it was 20.77 ± 2.59% (P = 0.9725). Biochemical parameters were influenced mostly in the physiological range. These results achieved after application of CCM 8558 in horses are original, giving us further opportunity to continue these studies, to measure additional parameters and to show the benefits of CCM 8558 application in horses.

  相似文献   
178.
179.
180.
N‐Methyl‐D‐aspartate (NMDA) receptors are key components in synaptic communication and are highly relevant in central nervous disorders, where they trigger excessive calcium entry into the neuronal cells causing harmful overproduction of nitric oxide by the neuronal nitric oxide synthase (nNOS) protein. Remarkably, NMDA receptor activation is aided by a second protein, postsynaptic density of 95 kDa (PSD95), forming the ternary protein complex NMDA/PSD95/nNOS. To minimize the potential side effects derived from blocking this ternary complex or either of its protein components, a promising approach points to the disruption of the PSD‐95/nNOS interaction which is mediated by a PDZ/PDZ domain complex. Since the rational development of molecules targeting such protein‐protein interaction relies on energetic and structural information herein, we include a thermodynamic and structural analysis of the PSD95‐PDZ2/nNOS‐PDZ. Two energetically relevant events are structurally linked to a “two‐faced” or two areas of recognition between both domains. First, the assembly of a four‐stranded antiparallel β‐sheet between the β hairpins of nNOS and of PSD95‐PDZ2, mainly enthalpic in nature, contributes 80% to the affinity. Second, binding is entropically reinforced by the hydrophobic interaction between side chains of the same nNOS β‐hairpin with the side chains of α2‐helix at the binding site of PSD95‐PDZ2, contributing the remaining 20% of the total affinity. These results suggest strategies for the future rational design of molecules able to disrupt this complex and constitute the first exhaustive thermodynamic analysis of a PDZ/PDZ interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号