首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Traits are important for understanding how plant communities assemble and function, providing a common currency for studying ecological processes across species, locations, and habitat types. However, the majority of studies relating species traits to community assembly rely upon vegetative traits of mature plants. Seed traits, which are understudied relative to whole‐plant traits, are key to understanding assembly of plant communities. This is particularly true for restored communities, which are typically started de novo from seed, making seed germination a critical first step in community assembly and an early filter for plant establishment. We experimentally tested the effects of seed traits (mass, shape, and embryo to seed size ratio) and phylogeny on germination response in 32 species commonly used in prairie grassland restoration in the Midwestern USA, analyzing data using time‐to‐event (survival) analysis. As germination is also influenced by seed dormancy, and dormancy break treatments are commonly employed in restoration, we also tested the effects of two pretreatments (cold stratification and gibberellic acid application) on time to germination. Seed traits, phylogeny, and seed pretreatments all affected time to germination. Of all traits tested, variables related to seed shape (height and shape variance) best predicted germination response, with high‐variance (i.e., pointier and narrower) seeds germinating faster. Phylogenetic position (the location of species on the phylogenetic tree relative to other tested species) was also an important predictor of germination response, that is, closely related species showed similar patterns in time to germination. This was true despite the fact that all measured seed traits showed phylogenetic signal, therefore phylogeny provided residual information that was not already captured by measured seed traits. Seed traits, phylogenetic position, and germination pretreatments were important predictors of germination response for a suite of species commonly used in grassland restoration. Shape traits were especially important, while mass, often the only seed trait used in studies of community assembly, was not a strong predictor of germination timing. These findings illustrate the ecological importance of seed traits that are rarely incorporated into functional studies of plant communities. This information can also be used to advance restoration practice by guiding restoration planning and seed mix design.  相似文献   

2.
Ethylene in seed dormancy and germination   总被引:17,自引:0,他引:17  
The role of ethylene in the release of primary and secondary dormancy and the germination of non-dormant seeds under normal and stressed conditions is considered. In many species, exogenous ethylene, or ethephon – an ethylene-releasing compound - stimulates seed germination that may be inhibited because of embryo or coat dormancy, adverse environmental conditions or inhibitors (e.g. abscisic acid, jasmonate). Ethylene can either act alone, or synergistically or additively with other factors. The immediate precursor of ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic acid (ACC), may also improve seed germination, but usually less effectively. Dormant or non-dormant inhibited seeds have a lower ethylene production ability, and ACC and ACC oxidase activity than non-dormant, uninhibited seeds. Aminoethoxyvinyl-glycine (AVG) partially or markedly inhibits ethylene biosynthesis in dormant or non-dormant seeds, but does not affect seed germination. Ethylene binding is required in seeds of many species for dormancy release or germination under optimal or adverse conditions. There are examples where induction of seed germination by some stimulators requires ethylene action. However, the mechanism of ethylene action is almost unknown.
The evidence presented here shows that ethylene performs a relatively vital role in dormancy release and seed germination of most plant species studied.  相似文献   

3.
休眠是种子植物在长期进化过程中产生的适应性性状, 通过抑制种子在不适宜的环境中萌发进而保证植物能够在逆境中生存。此外, 休眠有助于种子的长距离运输和扩散, 因此休眠对种子延续和物种保存具有重要意义。种子由休眠向萌发的发育转变不仅关系到物种的繁衍, 而且对保证农业生产中作物的产量和品质也具有重要作用。种子的休眠和萌发受到内源激素和外源光信号的共同调控。其中, 外源光信号主要通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠和萌发。该文系统综述了外源光信号和内源激素调控种子休眠和萌发的作用通路以及两类信号通路之间的交互作用, 旨在为农业生产中利用光和激素调控种子休眠与萌发提供参考。  相似文献   

4.
光信号与激素调控种子休眠和萌发研究进展   总被引:1,自引:0,他引:1  
休眠是种子植物在长期进化过程中产生的适应性性状, 通过抑制种子在不适宜的环境中萌发进而保证植物能够在逆境中生存。此外, 休眠有助于种子的长距离运输和扩散, 因此休眠对种子延续和物种保存具有重要意义。种子由休眠向萌发的发育转变不仅关系到物种的繁衍, 而且对保证农业生产中作物的产量和品质也具有重要作用。种子的休眠和萌发受到内源激素和外源光信号的共同调控。其中, 外源光信号主要通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠和萌发。该文系统综述了外源光信号和内源激素调控种子休眠和萌发的作用通路以及两类信号通路之间的交互作用, 旨在为农业生产中利用光和激素调控种子休眠与萌发提供参考。  相似文献   

5.
Dormant seeds of 18 species from 9 families covering a diverse range of seed dormancy syndromes and life histories from the southwest Australian biodiversity hotspot were assessed for germinability following storage at 15–25°C for 36 months. A total of 10 species with physical dormancy (PY) and 8 with either physiological dormancy (PD) or morphophysiological dormancy (MPD) were assessed as part of the study. Prior to storage, germination from dormant seeds was 1–27%, rising to 41–100% following specific dormancy‐breaking treatments. When seed dormancy was removed prior to storage for 36 months seeds from all species were found to maintain a nondormant state and germinate to a similar level to that observed at the beginning of the experiment (44–100%). Likewise, seeds that did not receive a prestorage dormancy‐breaking treatment maintained a dormant state (0–50% germination) and subsequently responded well to a dormancy‐breaking treatment immediately prior to germination assessment (49–99%). There were minimal differences in response to dormancy‐breaking treatments before and after 36 months storage (average 4–6% difference) and in the germination responses observed between both storage environments assessed (15°C/15% eRH or 15–25°C air dried). Based on these findings, storing seeds in a nondormant state does not alter germinability and this approach provides significant benefits to current seed‐based restoration programs through reduction of double handling and improved seed use efficiency.  相似文献   

6.
种子休眠机理研究概述   总被引:37,自引:1,他引:36  
种子休眠是植物本身适应环境和延续生存的一种特性,是种子植物进化的一种稳定对策。野生植物特别是原产温带的植物,其种子大多有深而长的休眠期。关于种子休眠的概念有多种,这些概念引出了许多学说、假说和模型。种壳障碍、胚形态发育不完全和生理后熟以及种子中含有化学抑制剂等,都可导致种子休眠。根据不同的分类标准可将种子分成不同类型,一般将种子分为强迫休眠和机体休眠;机体休眠又可分为外部休眠、内部休眠和综合休眠。植物种类不同休眠特性也不同;同种植物的种子来源于不同的居群和植株时,若采集时期不同,其休眠也可能不同;甚至在同一果实中的不同种子,休眠特性亦可能有差异。影响休眠性状表达的基因既有核基因,也有质基因,休眠通常表现为一种受多基因控制的数量性状。种子休眠具有重要的生态学意义,能有效地调节种子萌发的时空分布。研究种子的休眠特性和机理及其解除方法,有助于农业生产和植物多样性保护。  相似文献   

7.
Frey  Anne  Audran  Corinne  Marin  Elena  Sotta  Bruno  Marion-Poll  Annie 《Plant molecular biology》1999,39(6):1267-1274
Abscisic acid (ABA) is a plant hormone synthesized during seed development that is involved in the induction of seed dormancy. Delayed germination due to seed dormancy allows long-term seed survival in soil but is generally undesirable in crop species. Freshly harvested seeds of wild-type Nicotiana plumbaginifolia plants exhibit a clear primary dormancy that results in delayed germination, the degree of primary dormancy being influenced by environmental culture conditions of the mother plant. In contrast, seeds, obtained either from ABA-deficient mutant aba2-s1 plants directly or aba2-s1 plants grafted onto wild-type plant stocks, exhibited rapid germination under all conditions irrespective of the mother plant culture conditions. The ABA biosynthesis gene ABA2 of N. plumbaginifolia, encoding zeaxanthin epoxidase, was placed under the control of the constitutive 35S promoter. Transgenic plants overexpressing ABA2 mRNA exhibited delayed germination and increased ABA levels in mature seeds. Expression of an antisense ABA2 mRNA, however, resulted in rapid seed germination and in a reduction of ABA abundance in transgenic seeds. It appears possible, therefore, that seed dormancy can be controlled in this Nicotiana model species by the manipulation of ABA levels.  相似文献   

8.
Seed delivery to site is a critical step in seed‐based restoration programs. Months or years of seed collection, conditioning, storage, and cultivation can be wasted if seeding operations are not carefully planned, well executed, and draw upon best available knowledge and experience. Although diverse restoration scenarios present different challenges and require different approaches, there are common elements that apply to most ecosystems and regions. A seeding plan sets the timeline and details all operations from site treatments through seed delivery and subsequent monitoring. The plan draws on site evaluation data (e.g. topography, hydrology, climate, soil types, weed pressure, reference site characteristics), the ecology and biology of the seed mix components (e.g. germination requirements, seed morphology) and seed quality information (e.g. seed purity, viability, and dormancy). Plan elements include: (1) Site treatments and seedbed preparation to remove undesirable vegetation, including sources in the soil seed bank; change hydrology and soil properties (e.g. stability, water holding capacity, nutrient status); and create favorable conditions for seed germination and establishment. (2) Seeding requirements to prepare seeds for sowing and determine appropriate seeding dates and rates. (3) Seed delivery techniques and equipment for precision seed delivery, including placement of seeds in germination‐promotive microsites at the optimal season for germination and establishment. (4) A monitoring program and adaptive management to document initial emergence, seedling establishment, and plant community development and conduct additional sowing or adaptive management interventions, if warranted. (5) Communication of results to inform future seeding decisions and share knowledge for seed‐based ecological restoration.  相似文献   

9.
Seed germination is the most important transitional event between early stages in the life cycle of spermatophytes and understanding it is crucial to understand plant adaptation and evolution. However, so far seed germination of phylogenetically closely related species has been poorly investigated. To test the hypothises that phylogenetically related plant species have similar seed ecophysiological traits thereby reflecting certain habitat conditions as a result of local adaptation , we studied seed dormancy and germination in seven Mediterranean species in the genus Romulea (Iridaceae). Both the across‐species model and the model accounting for shared evolutionary history showed that cool temperatures (≤ 15°C) were the main factor that promoted seed germination. The absence of embryo growth before radicle emergence is consistent with a prompt germination response at cool temperatures. The range of temperature conditions for germination became wider after a period of warm stratification, denoting a weak primary dormancy. Altogether these results indicate that the studied species exhibit a Mediterranean germination syndrome, but with species‐specific germination requirements clustered in a way that follows the phylogenetic relatedness among those species. In addition, species with heavier seeds from humid habitats showed a wider range of conditions for germination at dispersal time than species from dry habitats possessing lighter seeds. We conclude that while phylogenetically related species showed very similar germination requirements, there are subtle ecologically meaningful differences, confirming the onset of adaptation to local ecological factors mediated by species relatedness.  相似文献   

10.
Seed dormancy is considered to be an adaptive strategy in seasonal and/or unpredictable environments because it prevents germination during climatically favorable periods that are too short for seedling establishment. Tropical dry forests are seasonal environments where seed dormancy may play an important role in plant resilience and resistance to changing precipitation patterns. We studied the germination behavior of seeds from six populations of the Neotropical vine Dalechampia scandens (Euphorbiaceae) originating from environments of contrasting rainfall seasonality. Seeds produced by second greenhouse‐generation plants were measured and exposed to a favorable wet environment at different time intervals after capsule dehiscence and seed dispersal. We recorded the success and the timing of germination. All populations produced at least some dormant seeds, but seeds of populations originating from more seasonal environments required longer periods of after‐ripening before germinating. Within populations, larger seeds tended to require longer after‐ripening periods than did smaller seeds. These results indicate among‐population genetic differences in germination behavior and suggest that these populations are adapted to local environmental conditions. They also suggest that seed size may influence germination timing within populations. Ongoing changes in seasonality patterns in tropical dry forests may impose strong selection on these traits.  相似文献   

11.
Seeds with a water‐impermeable seed coat and a physiologically dormant embryo are classified as having combinational dormancy. Seeds of Sicyos angulatus (burcucumber) have been clearly shown to have a water‐impermeable seed coat (physical dormancy [PY]). The primary aim of the present study was to confirm (or not) that physiological dormancy (PD) is also present in seeds of S. angulatus. The highest germination of scarified fresh (38%) and 3‐month dry‐stored (36%) seeds occurred at 35/20°C. The rate (speed) of germination was faster in scarified dry‐stored seeds than in scarified fresh seeds. Removal of the seed coat, but leaving the membrane surrounding the embryo intact, increased germination of both fresh and dry‐stored seeds to > 85% at 35/20°C. Germination (80–100%) of excised embryos (both seed coat and membrane removed) occurred at 15/6, 25/15 and 35/20°C and reached 95–100% after 4 days of incubation at 25/15 and 35/20°C. Dry storage (after‐ripening) caused an increase in the germination percentage of scarified and of decoated seeds at 25/15°C and in both germination percentage and rate of excised embryos at 15/6°C. Eight weeks of cold stratification resulted in a significant increase in the germination of scarified seeds at 25/15 and 35/20°C and of decoated seeds at 15/6 and 25/15°C. Based on the results of our study and on information reported in the literature, we conclude that seeds of S. angulatus not only have PY, but also non‐deep PD, that is, combinational dormancy (PY + PD).  相似文献   

12.
  • Seed germination responsiveness to environmental cues is crucial for plant species living in changeable habitats and can vary among populations within the same species as a result of adaptation or modulation to local climates. Here, we investigate the germination response to environmental cues of Sisymbrella dentata (L.) O.E. Schulz, an annual endemic to Sicily living in Mediterranean Temporary Ponds (MTP), a vulnerable ecosystem.
  • Germination of the only two known populations, Gurrida and Pantano, was assessed over a broad range of conditions to understand the role of temperatures, nitrate, hormones (abscisic acid – ABA and gibberellins – GA) and after‐ripening in dormancy release in this species.
  • Seed germination responsiveness varied between the two populations, with seeds from Gurrida germinating under a narrower range of conditions. Overall, this process in S. dentata consisted of testa and endosperm rupture as two sequential events, influenced by ABA and GA biosynthesis. Nitrate addition caused an earlier testa rupture, after‐ripening broadened the thermal conditions that allow germination, and alternating temperatures significantly promoted germination of non‐after‐ripened seeds.
  • Primary dormancy in S. dentata seeds likely allows this plant to form a persistent seed bank that is responsive to specific environmental cues characteristic of MTP habitats.
  相似文献   

13.
To assess the evolutionary significance of persistent seed banks, phenotypes of naturally germinating seeds must be compared with those that remain dormant under the same environmental conditions. Dormant seeds can often be induced to germinate by application of gibberellic acid (GA). However, this method is valid only if there are no phenotypic “side effects” of GA that could confound comparisons between dormant and naturally germinating seeds. We examined this assumption in Lesquerella fendleri, a short-lived perennial mustard of the desert Southwest. We exposed 3840 seeds from 16 maternal sibships to two different GA treatments (0 or 1 g/L GA) in two different germination environments (greenhouse and growth chamber), and measured germination and postgermination traits. As expected, application of GA increased germination. GA also had strong and long-lasting effects on seedling morphology. Seeds that received GA developed into seedlings that were taller, with fewer but longer leaves, than seeds that did not receive GA. Effects of GA on both dormancy and postgermination traits varied among maternal sibships. Our results indicate that for this species and this concentration of GA, morphological effects can be substantial. Further study is required to determine whether such side effects are found for lower concentrations of GA, or under conditions that encourage faster seedling growth. Nonetheless, the present results illustrate the importance of testing potential confounding effects of GA in studies of the evolution of seed dormancy and its influence on postgermination traits.  相似文献   

14.
  • Fruiting season of many Sri Lankan tropical montane species is not synchronised and may not occur when conditions are favourable for seedling establishment. We hypothesised that species with different fruiting seasons have different seed dormancy mechanisms to synchronise timing of germination with a favourable season for establishment. Using six species with different fruiting seasons, we tested this hypothesis.
  • Germination and imbibition of intact and manually scarified seeds were studied. Effect of GA3 on germination was examined. Embryo length:seed length (E:S) ratio of freshly matured seeds and of those with a split seed coat was determined. Time taken for radicle and plumule emergence and morphological changes of the embryos were recorded.
  • The radicle emerged from Ardisia missionis, Bheza nitidissima and Gaetnera walkeri seeds within 30 days, whereas it took >30 days in other species. Embryos grew in seeds of B. nitidissima and G. walkeri prior to radicle emergence but not in Microtropis wallichiana, Nothapodytes nimmoniana and Symplocos cochinchinensis. A considerable delay was observed between radicle and plumule emergence in all six species. Warm stratification and/or GA3 promoted germination of all species.
  • All the tested species have epicotyl dormancy. Seeds of B. nitidissima and G. walkeri have non‐deep simple morphophysiological epicotyl dormancy, and the other four species have non‐deep physiological epicotyl dormancy. Differences in radicle and epicotyl dormancy promote synchronisation of germination to a favourable time for seedling development. Therefore, information on dormancy‐breaking and germination requirements of both radicle and epicotyl are needed to determine the kind of dormancy of a particular species.
  相似文献   

15.
羊草种子休眠机制及破除方法研究   总被引:6,自引:1,他引:5  
羊草种子休眠程度深、发芽率低是限制栽培利用的重要因子.采用不同破除羊草种子休眠的方法,测定各处理对种子萌发的影响,以探索破除羊草种子休眠的有效途径.结果显示:(1)刺破种皮的裸种子较完整种子的萌发率、吸水速率、生活力分别由对照的6%、63%、0%显著增加到60%、86%、94%.(2)完整羊草种子分别用清水浸种1 d、30% NaOH浸种80 min、清水浸种1 d后用30% NaOH浸种60min其萌发率由6%分别显著提高到36%、60%、84%,而各浓度赤霉素处理完整种子其萌发率较对照均无显著变化. (3)采用清水浸种1 d后用30% NaOH处理60 min,再施加200 μg/g GA3综合处理,可使羊草完整种子的发芽率由6%提高到91%,接近其种子生活力94%.研究表明,羊草种子的稃与种皮不影响种子水分的吸收,但影响种子对GA3的吸收、不同程度地阻碍大分子物质的渗入、限制羊草种子内部萌发抑制物的渗出,从而引起种子休眠;分析认为稃和种皮以及种子内部萌发抑制物质是引起羊草种子休眠的主要原因.  相似文献   

16.
Soil seed banks act as a gene pool for local plant species and, as such, can buffer local populations, especially those experiencing challenging environmental conditions. Seed dormancy has important implications to dynamics of soil seed banks. Therefore, estimating the seed dormancy of transgenic crop–wild hybrids could shed light on the persistence of transgenes in wild‐plant soil seed banks. Individuals from eight populations of wild rice Oryza rufipogon were crossed with those of three insect‐resistant transgenic rice lines. Selfed (F2–F4) and backcrossed populations (BC1, BC1F2 and BC1F3) were then made from the hybrids. Seed germination was tested under three treatments: (a) normal; (b) overwintering in soil; and (c) one‐week heat‐shocking. The effects of transgene, wild parent and hybrid generation on hybrid seed germination were examined. No significant effect of insect‐resistant transgenes (Bt and CpTI) was detected on the seed dormancy of crop–wild hybrids, while a significant wild parent effect was found. The seeds of advanced generation hybrids have higher germination percentages and lower dormancy than do those of F1 and BC1 generations. The study showed that the dormancy of hybrid seeds was determined mainly by their genetic backgrounds. All hybrid seeds have higher germination percentages and lower dormancy (and, consequently, a poorer overwintering ability), compared with wild seeds, and reduce dormancy would contribute to a fitness disadvantage, compared with wild types. Therefore, such seeds might form part of naturally occurring soil seed banks, through which crop genes would persist in wild populations.  相似文献   

17.
Hybridisation between crops and their wild relatives may promote the evolution of weeds. Seed germination and dormancy are the earliest life‐history traits and are highly influenced by the maternal parent. However, the ecological role of the maternal effect on seed traits in the evolution of crop–wild hybrids has received little attention. In this study, we test the relative importance of maternal and hybridisation effects on seed traits of the first generation of crop–wild sunflower hybrids (Helianthus annuus). Seed germination was tested in two wild populations with contrasting dormancy, two cultivated materials and their reciprocal crosses at four different times after harvest and three different temperatures. Seed germination at each of the four times, after ripening response and secondary dormancy were recorded along with four morphological traits. Additionally, the pericarp anatomy was analysed with light and scanning electron microscopy. We observed strong maternal effects on all seed traits. Seed germination, morphology and pericarp anatomy differed largely between the crop and wild seeds and these traits in the crop–wild hybrids resembled their female parent. Slight but significant hybridisation effects were observed in germination, mainly in seeds produced on wild plants. Crop hybridisation changed seed germination, the after ripening response and secondary dormancy in the crop direction. Morphological and anatomical traits associated with domestication strongly correlated with the observed differences in seed germination and dormancy in crop–wild sunflower hybrids. The large maternal effects along with the evolutionary divergence in seed traits were responsible for the large phenotypic differences observed in crop–wild hybrids with the same genetic composition. Wild‐like seed traits of hybrids suggest that there are no barriers to crop gene introgression at the seed level whereas crop‐like seed traits could be strongly selected against, conditioning the selection of traits expressed later in the life cycle and in the next generations.  相似文献   

18.
生长素调控种子的休眠与萌发   总被引:2,自引:0,他引:2  
帅海威  孟永杰  罗晓峰  陈锋  戚颖  杨文钰  舒凯 《遗传》2016,38(4):314-322
植物种子的休眠与萌发,是植物生长发育过程中的关键阶段,也是生命科学领域的研究热点。种子从休眠向萌发的转换是极为复杂的生物学过程,由外界环境因子、体内激素含量及信号传导和若干关键基因协同调控。大量研究表明,植物激素脱落酸(Abscisic acid, ABA)和赤霉素(Gibberellin acid, GA)是调控种子休眠水平,决定种子从休眠转向萌发的主要内源因子。ABA与GA在含量和信号传导两个层次上的精确平衡,确保了植物种子能以休眠状态在逆境中存活,并在适宜的时间启动萌发程序。生长素(Auxin)是经典植物激素之一,其对向性生长和组织分化等生物学过程的调控已有大量研究。但最近有研究证实,生长素对种子休眠有正向调控作用,这表明生长素是继ABA之后的第二个促进种子休眠的植物激素。本文在回顾生长素的发现历程、阐释生长素体内合成途径及信号传导通路的基础上,重点综述了生长素通过与ABA的协同作用调控种子休眠的分子机制,并对未来的研究热点进行了讨论和展望。  相似文献   

19.
Climate change and plant regeneration from seed   总被引:2,自引:0,他引:2  
At the core of plant regeneration, temperature and water supply are critical drivers for seed dormancy (initiation, break) and germination. Hence, global climate change is altering these environmental cues and will preclude, delay, or enhance regeneration from seeds, as already documented in some cases. Along with compromised seedling emergence and vigour, shifts in germination phenology will influence population dynamics, and thus, species composition and diversity of communities. Altered seed maturation (including consequences for dispersal) and seed mass will have ramifications on life history traits of plants. Predicted changes in temperature and precipitation, and thus in soil moisture, will affect many components of seed persistence in soil, e.g. seed longevity, dormancy release and germination, and soil pathogen activity. More/less equitable climate will alter geographic distribution for species, but restricted migratory capacity in some will greatly limit their response. Seed traits for weedy species could evolve relatively quickly to keep pace with climate change enhancing their negative environmental and economic impact. Thus, increased research in understudied ecosystems, on key issues related to seed ecology, and on evolution of seed traits in nonweedy species is needed to more fully comprehend and plan for plant responses to global warming.  相似文献   

20.
种子的萌发特性是植物在长期进化过程中形成的一种适应环境变化的固有属性。对种子萌发特性的研究有助于我们理解物种的种群更新和种子育苗。本文旨在阐明我国重要资源植物苦槠(Castanopsis sclerophylla)的种子休眠类型和萌发特性。研究结果发现:①苦槠种子在其果实中占比非常高;②苦槠的果皮限制了种子对水分的吸收;③苦槠果皮阻碍了种子的萌发,除去果皮以后种子能够在较大温度范围内萌发;④除去果皮以后,苦槠种子在低温(15/5 ℃、20/10 ℃)下萌发困难,在25/15 ℃、30/20 ℃和35/25 ℃这3个温度梯度下均能迅速萌发。结果表明,苦槠的传播体(果实)具有物理休眠的特性。因此,壳斗科(Fagaceae)是具有物理休眠和脱水敏感性的一个新纪录科。结合壳斗科的系统发育位置,本研究支持物理休眠是一种较为进化的性状这一假说。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号