首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5745篇
  免费   484篇
  国内免费   2篇
  2023年   27篇
  2022年   46篇
  2021年   221篇
  2020年   123篇
  2019年   145篇
  2018年   166篇
  2017年   139篇
  2016年   235篇
  2015年   382篇
  2014年   385篇
  2013年   421篇
  2012年   574篇
  2011年   502篇
  2010年   306篇
  2009年   249篇
  2008年   354篇
  2007年   342篇
  2006年   259篇
  2005年   235篇
  2004年   206篇
  2003年   206篇
  2002年   153篇
  2001年   34篇
  2000年   27篇
  1999年   24篇
  1998年   37篇
  1997年   29篇
  1996年   23篇
  1995年   17篇
  1994年   19篇
  1993年   20篇
  1992年   20篇
  1991年   12篇
  1990年   13篇
  1989年   9篇
  1987年   10篇
  1985年   8篇
  1984年   15篇
  1983年   13篇
  1982年   14篇
  1980年   8篇
  1979年   7篇
  1978年   11篇
  1976年   10篇
  1975年   7篇
  1974年   8篇
  1972年   8篇
  1971年   7篇
  1969年   9篇
  1945年   7篇
排序方式: 共有6231条查询结果,搜索用时 712 毫秒
11.
12.
Woodlots are forest islands embedded within an urban matrix, and often represent the only natural areas remaining in suburban areas. Woodlots represent critical conservation areas for native plants, and are important habitat for wildlife in urban areas. Invasion by non-indigenous (NIS) plants can alter ecological structure and function, and may be especially severe in remnant forests where NIS propagule pressure is high. Woody shrubs in the Family Berberidaceae have been well documented as invaders of the forest–urban matrix in North America. Mahonia bealei (Berberidaceae) is a clonal shrub native to China, and is a popular ornamental in the Southeastern United States. Mahoni bealei is listed as “present” on some local and state floras, but almost nothing is known regarding its invasion potential in the United States. We sampled 15 woodlots in Clemson, South Carolina, to assess the invasion of M. bealei and other woody non-indigenous species (NIS). M. bealei invaded 87% of the woodlots surveyed and species richness of NIS on these woodlots varied from 5 to 14. Stepwise-multiple regression indicated that less canopy cover and older M. bealei predicted greater abundance of M. bealei , and that not all subdivisions were equally invaded (P < 0.0001; r2 = 0.88). The impact of M. bealei on native flora and fauna may be considerable, and it is likely to continue to spread in the Southeastern United States. M. bealei should be recognized as an aggressive invader in the Southeastern United States, with the potential for negative impacts on native flora and fauna.  相似文献   
13.
Toxin–antitoxin (TA) systems are small genetic elements that typically encode a stable toxin and its labile antitoxin. These cognate pairs are abundant in prokaryotes and have been shown to regulate various cellular functions. Vibrio cholerae, a human pathogen that is the causative agent of cholera, harbors at least thirteen TA loci. While functional HigBA, ParDE have been shown to stabilize plasmids and Phd/Doc to mediate cell death in V. cholerae, the function of seven RelBE-family TA systems is not understood. In this study we investigated the function of the RelBE TA systems in V. cholerae physiology and found that six of the seven relBE loci encoded functional toxins in E. coli. Deletion analyses of each relBE locus indicate that RelBE systems are involved in biofilm formation and reactive oxygen species (ROS) resistance. Interestingly, all seven relBE loci are induced under the standard virulence induction conditions and two of the relBE mutants displayed a colonization defect, which was not due to an effect on virulence gene expression. Although further studies are needed to characterize the mechanism of action, our study reveals that RelBE systems are important for V. cholerae physiology.  相似文献   
14.
15.
Therapeutic proteins are utilized in a variety of clinical applications, but side effects and rapid in vivo clearance still present hurdles. An approach that addresses both drawbacks is protein encapsulation within in a polymeric nanoparticle, which is effective but introduces the additional challenge of destabilizing the nanoparticle shell in clinically relevant locations. This study examined the effects of crosslinking self-assembled poly(l -lysine)-grafted-poly(ethylene glycol) nanoparticles with redox-responsive 3,3′-dithiobis(sulfosuccinimidyl propionate) (DTSSP) to achieve nanoparticle destabilization in a reductive environment. The polymer-protein nanoparticles (DTSSP NPs) were formed through electrostatic self-assembly and crosslinked with DTSSP, which contains a glutathione-reducible disulfide. As glutathione is upregulated in various cancers, DTSSP NPs could display destabilization within cancer cells. A library of DTSSP NPs was formed with varying copolymer to protein (C:P) and crosslinker to protein (X:P) mass ratios and characterized by size and encapsulation efficiency. DTSSP NPs with a 7:1 C:P ratio and 2:1 X:P ratio were further characterized by stability in the presence proteases and reducing agents. DTSSP NPs fully encapsulated the model protein and displayed 81% protein release when incubated with 5 mM dithiothreitol for 12 hr. This study contributes to understanding stimulus-responsive crosslinking of polymeric nanoparticles and could be foundational to clinical administration of therapeutic proteins.  相似文献   
16.
17.
Characteristic changes in the secreted polypeptides of Kirsten murine sarcoma virus (KiMSV) transformed mouse and rat cell lines could be detected 48 hours after infection of phenotypically normal cells with this virus and correlated with detection of the KiMSV encoded polypeptide p21.  相似文献   
18.
Summary Chromosomes and their relationship to nuclear components during various phases of the cell cycle were studied with different fixation, embedding, and enzyme techniques. The results showed that interphase chromosomes may have oriented in such a way that a given locus became associated with the nuclear membrane. Some chromosomes also appeared to interact with the nucleolus. The nuclear matrix materials, however, were distributed between the chromosomes and formed a delineating boundary for the chromosomes. These matrix materials, furthermore, formed channel-like structures within the nucleus and towards the cytoplasm through their interaction with nuclear pore complexes. During mitosis, chromosomes were encapsulated with material that appeared to be derived from the matrix, disintegrated residues and fragments of the nuclear envelope, the lamina, and nucleolar material. These chromosome-associated materials seen in mitosis appeared to serve as foci for formation of new nuclear components in subsequent interphase.  相似文献   
19.
Summary The expression of many secreted recombinant proteins in Gram-negative bacteria is limited by degradation in the periplasmic space. We have previously shown that the production of protein A--lactamase, a secreted fusion protein highly sensitive to proteolysis in Escherichia coli, can be increased in mutant strains deficient in up to three cell-envelope-associated proteolytic activities. In this work we investigated the effect of fermentation conditions on suppressing any residual proteolytic activity in various protease-deficient strains. Optimal production of the fusion protein was observed in cells grown under mildly acidic conditions (5.5pH6.0) and at low temperatures. These conditios were shown to specifically decrease the rate of proteolysis. In addition, a further increase in production was observed in cultures supplemented with 0.5 to 0.75 mM zinc chloride. This may relate to the inhibition of a cell envelope protease by Zn2+ ions. Offsprint requests to: G. Georgiou  相似文献   
20.
Isopeptidase is a novel eukaryotic enzyme that cleaves a structural chromatin protein, A24, stoichiometrically into H2A and ubiquitin. To understand the rapid turnover of ubiquitin in mitosis as wells as the high specific activity of the enzyme associated with metaphase chromosomes, attempts were made to determine chromatin constituents that show high affinity for this enzyme. Endogenous protease-free isopeptidase was prepared from calf thymus and applied to a Sepharose 4B affinity column on which histones, DNA, NHCP and ubiquitin were respectively immobilized. The enzyme proved to bind only histones. To further determine which of the histone fractions is involved, affinity columns with each histone fraction were also used. The enzyme showed affinity for all histone fractions. However, the strength of affinity varied in the order H2A>H3 H2B≥H4?H1, being inversely correlated with the ratio of basic/acidic amino acids in these molecules. These results suggest that the turnover of A24 in mitosis is controlled, at least in part, by the affinity of enzyme for histones, and also that such affinity is caused by a mechanism which cannot be explained simply by the electrostatic interaction between negatively charged enzyme molecules and positively charged histones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号