首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   408篇
  免费   43篇
  2024年   1篇
  2023年   6篇
  2022年   3篇
  2021年   11篇
  2020年   4篇
  2019年   6篇
  2018年   9篇
  2017年   7篇
  2016年   13篇
  2015年   27篇
  2014年   22篇
  2013年   31篇
  2012年   28篇
  2011年   38篇
  2010年   38篇
  2009年   21篇
  2008年   24篇
  2007年   30篇
  2006年   23篇
  2005年   29篇
  2004年   23篇
  2003年   14篇
  2002年   16篇
  2001年   1篇
  1999年   4篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1971年   1篇
排序方式: 共有451条查询结果,搜索用时 15 毫秒
81.
Human–wildlife conflict, habitat loss, and prey hunting are the main threats to carnivore species worldwide. Forest conversion as consequence of deforestation and agricultural expansion increases the proximity between carnivores and humans, thereby escalating conflicts. Knowledge about carnivore species in data-poor countries, such as Colombia, is scarce which has the potential to result in poor landscape planning decisions. For many species, the only existing spatial information resides in expert-driven approaches which result in coarse-resolution ‘extent-of-occurrence’ maps. There is an increasing need for the development of methodologies to identify conservation and management areas at appropriate scales. Multi-criteria approaches will allow the inclusion of diverse species attributes enabling environmental institutions to address complex landscape decisions that result in conservation and management of carnivore habitat. We present a multi-criteria spatial identification tool for conservation and management areas, focused on Jaguars (Panthera onca) in the Sierra Nevada de Santa Marta, in northern Colombia. Our approach identifies areas based on the relationship between three spatial criteria: (1) suitable habitat patches, (2) habitat connectivity, and (3) zones of higher likelihood of human–jaguar conflict. We identified areas with the presence of at least one spatial criteria in 32% of the study area. Only 16.28% of these occur within protected areas (PAs) and the remaining fall on private lands (83.72%), either within (35.68%) or outside (48.04%) buffer zones of PAs. Our results highlight the need for multi-stakeholder collaborative approaches given that most proposed conservation areas fall on private rather than public lands.  相似文献   
82.
Nonenzymatic glycosylation of albumin in vivo occurs at multiple sites. Glucose gets attached to Lys-199, Lys-281, Lys-439, and Lys-525 as well as to some other lysine residues. The principal glycosylated site is Lys-525. Approximately 33% of the overall glycosylation occurs at this site. This site specificity is remarkable and is postulated to be a consequence of local catalysis of the nonenzymatic glycosylation reaction. It appears that positively charged amino groups in the protein catalyze the Amadori rearrangement at specific sites. The principal glycosylated site, Lys-525, lies in a Lys-Lys sequence; other glycosylated sites lie in a Lys-Lys, Lys-His, and Lys-His-Lys sequence or are near disulfide bridges, which are likely to place amino groups of more remote parts of the protein closer to these sites. The occurrence of nonenzymatic glycosylation at most of the identified sites in albumin from diabetic patients is explained by the concept of local acid-base catalysis of the Amadori rearrangement.  相似文献   
83.
There is a clear need for agents with novel mechanisms of action to provide new therapeutic approaches for the treatment of pancreatic cancer. Owing to its structural similarity to l-arginine, l-canavanine, the δ-oxa-analog of l-arginine, is a substrate for arginyl tRNA synthetase and is incorporated into nascent proteins in place of l-arginine. Although l-arginine and l-canavanine are structurally similar, the oxyguanidino group of l-canavanine is significantly less basic than the guanidino group of l-arginine. Consequently, l-canavanyl proteins lack the capacity to form crucial ionic interactions, resulting in altered protein structure and function, which leads to cellular death. Since l-canavanine is selectively sequestered by the pancreas, it may be especially useful as an adjuvant therapy in the treatment of pancreatic cancer. This novel mechanism of cytotoxicity forms the basis for the anticancer activity of l-canavanine and thus, arginyl tRNA synthetase may represent a novel target for the development of such therapeutic agents.  相似文献   
84.
Antimicrobial photodynamic inhibition (aPI) utilizes radical stress generated from the excitation of a photosensitizer (PS) with light to destroy pathogens. Its use against Trichophyton rubrum, a dermatophytic fungus with increasing incidence and resistance, has not been well characterized. Our aim was to evaluate the mechanism of action of aPI against T. rubrum using curcumin as the PS in both free and nanoparticle (curc-np) form. Nanocarriers stabilize curcumin and allow for enhanced solubility and PS delivery. Curcumin aPI, at optimal conditions of 10 μg/mL of PS with 10 J/cm2 of blue light (417 ± 5 nm), completely inhibited fungal growth (p<0.0001) via induction of reactive oxygen (ROS) and nitrogen species (RNS), which was associated with fungal death by apoptosis. Interestingly, only scavengers of RNS impeded aPI efficacy, suggesting that curcumin acts potently via a nitrosative pathway. The curc-np induced greater NO expression and enhanced apoptosis of fungal cells, highlighting curc-np aPI as a potential treatment for T. rubrum skin infections.  相似文献   
85.
PGRL1 RNA and protein levels are increased in iron-deficient Chlamydomonas reinhardtii cells. In an RNAi strain, which accumulates lower PGRL1 levels in both iron-replete and -starved conditions, the photosynthetic electron transfer rate is decreased, respiratory capacity in iron-sufficient conditions is increased, and the efficiency of cyclic electron transfer under iron-deprivation is diminished. Pgrl1-kd cells exhibit iron deficiency symptoms at higher iron concentrations than wild-type cells, although the cells are not more depleted in cellular iron relative to wild-type cells as measured by mass spectrometry. Thiol-trapping experiments indicate iron-dependent and redox-induced conformational changes in PGRL1 that may provide a link between iron metabolism and the partitioning of photosynthetic electron transfer between linear and cyclic flow. We propose, therefore, that PGRL1 in C. reinhardtii may possess a dual function in the chloroplast; that is, iron sensing and modulation of electron transfer.  相似文献   
86.
DNA replication in all eukaryotes starts with the process of loading the replicative helicase MCM2–7 onto chromatin during late mitosis of the cell cycle. MCM2–7 is a key component of the prereplicative complex (pre-RC), which is loaded onto chromatin by the concerted action of origin recognition complex, Cdc6, and Cdt1. Here, we demonstrate that And-1 is assembled onto chromatin in late mitosis and early G1 phase before the assembly of pre-RC in human cells. And-1 forms complexes with MCM2–7 to facilitate the assembly of MCM2–7 onto chromatin at replication origins in late mitosis and G1 phase. We also present data to show that depletion of And-1 significantly reduces the interaction between Cdt1 and MCM7 in G1 phase cells. Thus, human And-1 facilitates loading of the MCM2–7 helicase onto chromatin during the assembly of pre-RC.  相似文献   
87.
Previously, benzthiazole containing LTA4H inhibitors were discovered that were potent (13), but were associated with the potential for a hERG liability. Utilizing medicinal chemistry first principles (e.g., introducing rigidity, lowering c Log D) a new benzthiazole series was designed, congeners of 13, which led to compounds 7a, 7c, 12ad which exhibited LTA4H IC50 = 3–6 nM and hERG Dofetilide Binding IC50 = 8.9–> >10 μM.  相似文献   
88.
89.
BCAAs (branched-chain amino acids) are indispensable (essential) amino acids that are required for body protein synthesis. Indispensable amino acids cannot be synthesized by the body and must be acquired from the diet. The BCAA leucine provides hormone-like signals to tissues such as skeletal muscle, indicating overall nutrient sufficiency. BCAA metabolism provides an important transport system to move nitrogen throughout the body for the synthesis of dispensable (non-essential) amino acids, including the neurotransmitter glutamate in the central nervous system. BCAA metabolism is tightly regulated to maintain levels high enough to support these important functions, but at the same time excesses are prevented via stimulation of irreversible disposal pathways. It is well known from inborn errors of BCAA metabolism that dysregulation of the BCAA catabolic pathways that leads to excess BCAAs and their alpha-keto acid metabolites results in neural dysfunction. In this issue of Biochemical Journal, Joshi and colleagues have disrupted the murine BDK (branched-chain alpha-keto acid dehydrogenase kinase) gene. This enzyme serves as the brake on BCAA catabolism. The impaired growth and neurological abnormalities observed in this animal show conclusively the importance of tight regulation of indispensable amino acid metabolism.  相似文献   
90.
The single-strand overhang present at telomeres plays a critical role in mediating both the capping and telomerase regulation functions of telomeres. The telomere end-binding proteins, Cdc13 in Saccharomyces cerevisiae, Pot1 in higher eukaryotes, and TEBP in the ciliated protozoan Oxytricha nova, exhibit sequence-specific binding to their respective single-strand overhangs. S. cerevisiae telomeres are composed of a heterogeneous mixture of GT-rich telomeric sequence, unlike in higher eukaryotes which have a simple repeat that is maintained with high fidelity. In yeast, the telomeric overhang is recognized by the essential protein Cdc13, which coordinates end-capping and telomerase activities at the telomere. The Cdc13 DNA-binding domain (Cdc13-DBD) binds these telomere sequences with high affinity (3 pM) and sequence specificity. To better understand the basis for this remarkable recognition, we have investigated the binding of the Cdc13-DBD to a series of altered DNA substrates. Although an 11-mer of GT-rich sequence is required for full binding affinity, only three of these 11 bases are recognized with high specificity. This specificity differs from that observed in the other known telomere end-binding proteins, but is well suited to the specific role of Cdc13 at yeast telomeres. These studies expand our understanding of telomere recognition by the Cdc13-DBD and of the unique molecular recognition properties of ssDNA binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号