首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   8篇
  国内免费   3篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   2篇
  2013年   12篇
  2012年   5篇
  2011年   11篇
  2010年   15篇
  2009年   8篇
  2008年   7篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
31.
Drought‐induced forest decline, like the Scots pine mortality in inner‐Alpine valleys, will gain in importance as the frequency and severity of drought events are expected to increase. To understand how chronic drought affects tree growth and tree‐ring δ13C values, we studied mature Scots pine in an irrigation experiment in an inner‐Alpine valley. Tree growth and isotope analyses were carried out at the annual and seasonal scale. At the seasonal scale, maximum δ13C values were measured after the hottest and driest period of the year, and were associated with decreasing growth rates. Inter‐annual δ13C values in early‐ and latewood showed a strong correlation with annual climatic conditions and an immediate decrease as a response to irrigation. This indicates a tight coupling between wood formation and the freshly produced assimilates for trees exposed to chronic drought. This rapid appearance of the isotopic signal is a strong indication for an immediate and direct transfer of newly synthesized assimilates for biomass production. The fast appearance and the distinct isotopic signal suggest a low availability of old stored carbohydrates. If this was a sign for C‐storage depletion, an increasing mortality could be expected when stressors increase the need for carbohydrate for defence, repair or regeneration.  相似文献   
32.
This study presents wing‐beat frequency data measured mainly by radar, complemented by video and cinematic recordings, for 153 western Palaearctic and two African species. Data on a further 45 Palaearctic species from other sources are provided in an electronic appendix. For 41 species with passerine‐type flight, the duration of flapping and pausing phases is given. The graphical presentations of frequency ranges and wing‐beat patterns show within‐species variation and allow easy comparison between species, taxonomic groups and types of flight. Wing‐beat frequency is described by Pennycuick (J. Exp. Biol. 2001; 204: 3283–3294) as a function of body‐mass, wing‐span, wing‐area, gravity and air density; for birds with passerine‐type flight the power‐fraction has also to be considered. We tested Pennycuick’s general allometric model and estimated the coefficients based on our data. The general model explained a high proportion of variation in wing‐beat frequency and the coefficients differed only slightly from Pennycuick’s original values. Modelling continuous‐flapping flyers alone resulted in coefficients not different from those predicted (within 95% intervals). Doing so for passerine‐type birds resulted in a model with non‐significant contributions of body‐mass and wing‐span to the model. This was mainly due to the very high correlation between body‐mass, wing‐span and wing‐area, revealing similar relative scaling properties within this flight type. However, wing‐beat frequency increased less than expected with respect to power‐fraction, indicating that the drop in flight level during the non‐flapping phases, compensated by the factor (g/q)0.5 in Pennycuick’s model, is smaller than presumed. This may be due to lift produced by the body during the bounding phase or by only partial folding of the wings.  相似文献   
33.
In order to evaluate selection of male morphological traits during copulation, a laboratory experiment was performed with the promiscuous seedbug Lygaeus simulans. Three male traits suspected as putative targets of selection were measured: weight, fluctuating asymmetry of a measure on the forewings, and length of a conspicuous genital structure, the processus gonopori. As fitness measures we considered total fecundity (number of fertilized eggs), insemination and fertilization success (established if a female laid fertilized eggs after copulation), and the interval between copulation and oviposition. Eighty-four males were allowed a single copulation with one virgin female each. Out of 67 copulations, 27 (40.2%) resulted in fertilized eggs and the oviposition latency ranged from 6 to 26 days. Regressions of male traits on the fitness measures showed significant phenotypical selection of two male traits: (1) males of average weight are more likely to achieve fertilization and (2) the oviposition latency was shorter for males with lower asymmetry. The copulation-oviposition interval may be especially important for male fertilization success because Lygaeus males perform copulatory mate guarding and the last male copulating with a female fertilizes most of the eggs. No selection of the genitalic trait was detected.  相似文献   
34.
ABSTRACT. Using monospecific antibodies, the presence and distribution of tubulin, actin, myosin, intermediate filaments, and lamins were examined in the exoerythrocytic liver schizont of Plasmodium berghei by conventional indirect fluorescent antibody methods and confocal laser scanning microscopy. the binding reactivity of the antibodies to parasite proteins was determined by Western blot analysis. the localisation of all antibodies in control host hepatocytes followed expected distributions in both uninfected and infected hepatocytes; by contrast, reactivity to the exoerythrocytic schizont was variable. the parasite reacted positively with selected anti-tubulin, -actin, and -myosin antibodies in both fluorescence and Western blot analysis. Anti-lamin antibodies were positive by confocal indirect fluorescent antibody labelling, but no labelling was detected with anti-intermediate filament antibody. Within the technical limits of resolution of the methods as applied to asynchronous parasite infections, not one of the antibodies reacting positively with the parasite by the indirect fluorescent antibody technique could be shown to identify unequivocally the classic architectural features associated with their respective target organelles, i.e. microtubules, stress-fibres or the nuclear envelope.  相似文献   
35.
Pollination of the edelweiss, Leontopodium alpinum   总被引:3,自引:0,他引:3  
This paper describes the pollinators, scent and nectar composition of the edelweiss ( Leontopodium alpinum). In contrast to former statements in the literature, the flowers of this famous plant are frequently visited by various insects in 29 familieS. However, in the two populations of L. Alpinum investigated here, flies (Muscidae) were the most frequent visitorS. Although the investigated insects carried pollen grains all over their bodies and qualify as mess and soil pollinators, pollen grains were not randomly distributed on the bodies of the insects but were most concentrated on their legs. Their loads of L. Alpinum pollen varied greatly, but more than 60% of all Leontopodium pollen grains found on the insects were carried by only 12% of the specimens collected, suggesting that a small fraction of the visitors is responsible for most of the pollen transfer. The number of pollen grains found on the insects also increased significantly with increasing body size of the insects. The scent of the flowers is sweet and honey-like (phenylethyl alcohol and phenylacetic acid) but also contains disagreeably smelling, sweat-like components (3-methyl-2-pentenoic acids, butyric acid and other fatty acids).Nectar is secreted in minute amounts in the tiny florets of the flower heads. The sugar composition of the nectar is dominated by the hexoses fructose and glucose. It also contains a high amino acid concentration with many different amino acidS. Nectar, scent and the shape of the flowers of L. Alpinum all fit the syndrome of fly pollination.  相似文献   
36.
37.
Land‐use change (LUC) is a major driving factor for the balance of soil organic carbon (SOC) stocks and the global carbon cycle. The temporal dynamic of SOC after LUC is especially important in temperate systems with a long reaction time. On the basis of 95 compiled studies covering 322 sites in the temperate zone, carbon response functions (CRFs) were derived to model the temporal dynamic of SOC after five different LUC types (mean soil depth of 30±6 cm). Grassland establishment caused a long lasting carbon sink with a relative stock change of 128±23% and afforestation on former cropland a sink of 116±54%, 100 years after LUC (mean±95% confidence interval). No new equilibrium was reached within 120 years. In contrast, there was no SOC sink following afforestation of grasslands and 75% of all observations showed SOC losses, even after 100 years. Only in the forest floor, there was carbon accumulation of 0.38±0.04 Mg ha?1 yr?1 in afforestations adding up to 38±4 Mg ha?1 labile carbon after 100 years. Carbon loss after deforestation (?32±20%) and grassland conversion to cropland (?36±5%), was rapid with a new SOC equilibrium being reached after 23 and 17 years, respectively. The change rate of SOC increased with temperature and precipitation but decreased with soil depth and clay content. Subsoil SOC changes followed the trend of the topsoil SOC changes but were smaller (25±5% of the total SOC changes) and with a high uncertainty due to a limited number of datasets. As a simple and robust model approach, the developed CRFs provide an easily applicable tool to estimate SOC stock changes after LUC to improve greenhouse gas reporting in the framework of UNFCCC.  相似文献   
38.
Field‐scale experiments simulating realistic future climate scenarios are important tools for investigating the effects of current and future climate changes on ecosystem functioning and biogeochemical cycling. We exposed a seminatural Danish heathland ecosystem to elevated atmospheric carbon dioxide (CO2), warming, and extended summer drought in all combinations. Here, we report on the short‐term responses of the nitrogen (N) cycle after 2 years of treatments. Elevated CO2 significantly affected aboveground stoichiometry by increasing the carbon to nitrogen (C/N) ratios in the leaves of both co‐dominant species (Calluna vulgaris and Deschampsia flexuosa), as well as the C/N ratios of Calluna flowers and by reducing the N concentration of Deschampsia litter. Belowground, elevated CO2 had only minor effects, whereas warming increased N turnover, as indicated by increased rates of microbial NH4+ consumption, gross mineralization, potential nitrification, denitrification and N2O emissions. Drought reduced belowground gross N mineralization and decreased fauna N mass and fauna N mineralization. Leaching was unaffected by treatments but was significantly higher across all treatments in the second year than in the much drier first year indicating that ecosystem N loss is highly sensitive to changes and variability in amount and timing of precipitation. Interactions between treatments were common and although some synergistic effects were observed, antagonism dominated the interactive responses in treatment combinations, i.e. responses were smaller in combinations than in single treatments. Nonetheless, increased C/N ratios of photosynthetic tissue in response to elevated CO2, as well as drought‐induced decreases in litter N production and fauna N mineralization prevailed in the full treatment combination. Overall, the simulated future climate scenario therefore lead to reduced N turnover, which could act to reduce the potential growth response of plants to elevated atmospheric CO2 concentration.  相似文献   
39.
Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its δ13C signature. Leaching of biogenic DIC was 8.3±4.9 g m?2 yr?1 for forests, 24.1±7.2 g m?2 yr?1 for grasslands, and 14.6±4.8 g m?2 yr?1 for croplands. DOC leaching equalled 3.5±1.3 g m?2 yr?1 for forests, 5.3±2.0 g m?2 yr?1 for grasslands, and 4.1±1.3 g m?2 yr?1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4±4.0 g C m?2 yr?1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5–98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号