首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1806篇
  免费   141篇
  国内免费   73篇
  2023年   16篇
  2022年   19篇
  2021年   23篇
  2020年   39篇
  2019年   38篇
  2018年   52篇
  2017年   39篇
  2016年   45篇
  2015年   40篇
  2014年   74篇
  2013年   147篇
  2012年   65篇
  2011年   101篇
  2010年   74篇
  2009年   103篇
  2008年   126篇
  2007年   114篇
  2006年   87篇
  2005年   95篇
  2004年   73篇
  2003年   53篇
  2002年   54篇
  2001年   42篇
  2000年   39篇
  1999年   37篇
  1998年   43篇
  1997年   30篇
  1996年   31篇
  1995年   31篇
  1994年   42篇
  1993年   29篇
  1992年   26篇
  1991年   19篇
  1990年   15篇
  1989年   25篇
  1988年   24篇
  1987年   23篇
  1986年   16篇
  1985年   20篇
  1984年   17篇
  1983年   8篇
  1982年   12篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1973年   1篇
排序方式: 共有2020条查询结果,搜索用时 15 毫秒
1.
It has long been assumed that serial homologues are ancestrally similar—polysomerism resulting from a “duplication” or “repetition” of forms—and then often diverge—anisomerism, for example, as they become adapted to perform different tasks as is the case with the forelimb and hind limbs of humans. However, such an assumption, with crucial implications for comparative, evolutionary, and developmental biology, and for evolutionary developmental biology, has in general not really been tested by a broad analysis of the available empirical data. Perhaps not surprisingly, more recent anatomical comparisons, as well as molecular knowledge of how, for example, serial appendicular structures are patterned along with different anteroposterior regions of the body axis of bilateral animals, and how “homologous” patterning domains do not necessarily mark “homologous” morphological domains, are putting in question this paradigm. In fact, apart from showing that many so-called “serial homologues” might not be similar at all, recent works have shown that in at least some cases some “serial” structures are indeed more similar to each other in derived taxa than in phylogenetically more ancestral ones, as pointed out by authors such as Owen. In this article, we are taking a step back to question whether such assumptions are actually correct at all, in the first place. In particular, we review other cases of so-called “serial homologues” such as insect wings, arthropod walking appendages, Dipteran thoracic bristles, and the vertebrae, ribs, teeth, myomeres, feathers, and hairs of chordate animals. We show that: (a) there are almost never cases of true ancestral similarity; (b) in evolution, such structures—for example, vertebra—and/or their subparts—for example, “transverse processes”—many times display trends toward less similarity while in many others display trends toward more similarity, that is, one cannot say that there is a clear, overall trend to anisomerism.  相似文献   
2.
Summary The sequence homology in the single copy DNA of sea stars has been measured. Labeled single copy DNA fromPisaster ochraceus was reannealed with excess genomic DNA fromP. brevispinus, Evasterias troschelii, Pycnopodia helianthoides, Solaster stimpsoni, andDermasterias imbricata. Reassociation reactions were performed under two criteria of salt and temperature. The extent of reassociation and thermal denaturation characteristics of hybrid single copy DNA molecules follow classical taxonomic lines.P. brevispinus DNA contains essentially all of the sequences present inP. ochraceus single copy tracer whileEvasterias andPycnopodia DNAs contain 52% and 46% of such sequences respectively. Reciprocal reassociation reactions with labeledEvasterias single copy DNA confirm the amount and fidelity of the sequence homology. There is a small definite reaction of uncertain homology betweenP. ochraceus single copy DNA andSolaster orDermasterias DNA. SimilarlySolaster DNA contains sequences homologous to approximately 18% ofDermasterias unique DNA. The thermal denaturation temperatures of heteroduplexes indicate that the generaPisaster andEvasterias diverged shortly after the divergence of the subfamilies Pycnopodiinae and Asteriinae. The twoPisaster species diverged more recently, probably in the most recent quarter of the interval since the separation of the generaPisaster andEvasterias.  相似文献   
3.
Morphological elements, or structures, are sorted into four categories depending on their level of anatomical isolation and the presence or absence of intrinsically identifying characteristics. These four categories are used to highlight the difficulties with the concept of structure and our ability to identify or define structures. The analysis is extended to the concept of homology through a discussion of the methodological and philosophical problems of the current concept of homology. It is argued that homology is fundamentally a similarity based concept rather than a phylogenetic concept, and a proposal is put forth to return to a comparative context for homology. It is shown that for both the concepts of structure and homology ana priori assumption of stable underlying patterns (i.e. archetypes) is essential.  相似文献   
4.
Abstract The origin of Diptera, and the homologies of the dipteran wing, are re-examined in the light of recent studies on the flight biomechanics and functional wing morphology of Diptera and of Panorpa. Significant Diptera apomorphies are identified, relevant fossils discussed, and a hypothetical wing ground-plan figured.
The arculus, the modified clavus and the anteroposterior asymmetry of the fly wing seem to be adaptations to a mode of flight in which instantaneous wing pitch and camber are controlled automatically, rather than by muscular action; probably in association with the development of asynchronous power musculature.
Tillyard's Cu2 (=CUP) is believed to be a secondary pseudo-vein, his 1A to be the true CuP and 2A to be 1A.
The late Permian fossil Permotipula Patricia is almost certainly a member of the Diptera stem-group, possibly even of the crown-group. The Mesozoic Laurentipteridae and the Permian Permotanyderidae are other possible, but not certain, stem-group members.  相似文献   
5.
Summary A linear mitochondrial plasmid reported to be associated with cytoplasmic male sterility in the genus Brassica was analyzed. A protein was found to be associated with the 5 ends of the plasmid. The entire plasmid was cloned by the homopolymer tailing technique via free hydroxyl groups present at its 3 ends. DNA sequence analysis of the cloned plasmid revealed a perfect terminal inverted repeat of 325 base pairs. Southern hybridization and restriction enzyme mapping analysis confirmed colinearity of the native plasmid and the clone, which showed significant homology with organelle DNA but not with nuclear DNA. Under high-stringency hybridization conditions, an internal 4.6 kb fragment of the 11.5 kb plasmid hybridized to the main mitochondrial genome in several species. Although the hybridization signal was weaker, the chloroplast genome also showed homology to the mitochondrial plasmid. The plasmid was undetectable at a molar ratio of less than 1/10 000 of the main mitochondrial genome in some lines of Brassica and Raphanus that contain the Ogura male sterile cytoplasm (cms). The absence of the plasmid in these sterile lines demonstrates that the plasmid is not required for the expression and maternal inheritance of male sterility.  相似文献   
6.
Summary A localized region of low DNA sequence homology was revealed in two strains of Bacillus subtilis by a specific 100-fold reduction in transformation by W23 DNA of the tag1 locus, a teichoic acid marker of strain 168. Fifty nine rare recombinants, hybrid at this locus, had all acquired donor-specific phage resistance characters, while losing those specific to the 168 recipient. Chemical analysis of isolated cell walls showed that these modifications are associated with major changes in the wall teichoic acids. Genetic analysis demonstrated that determinants for the ribitol phosphate polymer of strain W23 had been transferred to 168, replacing those for the glycerol phosphate polymer in the recipient. All W23 genes coding for poly(ribitol phosphate) in the hybrids and those specifying anionic wall polymers in strain 168 are clustered near hisA. In addition to tag1, the region exchanged extends just beyond gtaA in some hybrids, whereas in others it may include the more distant gtaB marker, encompassing a region sufficient to contain at least 20 average-sized genes. Surface growth, flagellation, transformability and sporulation all appeared normal in hybrids examined. Recombinants without a major wall teichoic acid from either strain were not found, suggesting that an integral transfer of genes for poly(ribitol phosphate) from W23 had occurred in all hybrids isolated. We interpret these results as indicating an essential role for anionic wall polymers in the growth of B. subtillis.  相似文献   
7.
Summary After random Tn5 mutagenesis of the stem-nodulating Sesbania rostrata symbiont strain ORS571, Nif-, Fix- and Nod- mutants were isolated. The Nif- mutants had lost both free-living and symbiotic N2 fixation capacity. The Fix- mutants normally fixed N2 in the free-living state but induced ineffective nodules on S. rostrata. They were defective in functions exclusively required for symbiotic N2 fixation. A further analysis of the Nod- mutants allowed the identification of two nod loci. A Tn5 insertion in nod locus 1 completely abolished both root and stem nodulation capacity. Root hair curling, which is an initial event in S. rostrata root nodulation, was no longer observed. A 400 bp region showing weak homology to the nodC gene of Rhizobium meliloti was located 1.5 kb away from this nod Tn5 insertion. A Tn5 insertion in nod locus 2 caused the loss of stem and root nodulation capacity but root hair curling still occurred. The physical maps of a 20.5 kb DNA region of nod locus 1 and of a 40 kb DNA region of nod locus 2 showed no overlaps. The two nod loci are not closely linked to nif locus 1, containing the structural genes for the nitrogenase complex (Elmerich et al. 1982).  相似文献   
8.
An attempt has been made to build a model of human rhinovirus 2 (HRV2) based on the known human rhinovirus 14 (HRV14) structure. HRV2 was selected because its amino acid sequence is known and because it belongs to the minor rhinovirus receptor class as compared to HRV14, which belongs to the major class. Initial alignment of HRV2 with HRV14 based on the primary sequence and the knowledge of the three-dimensional structure of HRV14 showed that the most probable position of the majority of insertions and deletions occurred in the vicinity of the neutralizing immunogenic sites (NIm). Out of a total of 855 amino acids present in one copy of each of the capsid proteins VP1 through VP4 of HRV14, 411 are different between the two viruses. There are also 6 amino acid residues inserted and 14 residues deleted in HRV2 relative to HRV14. Examination of amino acid interactions showed several cases of conservation of function, e.g., salt bridges or the filling of restricted space. The largest variation amongst the residues lining the canyon, the putative receptor binding site, was in the carboxy-terminal residues of VP1.  相似文献   
9.
DNA hybridization techniques showed Chlorella fusca var. vacuolata and C. kessleri to be homogeneous species with DNA homologies of 90–100% C. fusca var. fusca and var. rubescens, however, have only about 15% DNA homology with C. fusca var. vacuolata and should no longer be regarded as varieties. A good correlation was found so far between biochemical and physiological characters used in the taxonomy of Chlorella and DNA relatedness. Mutant strains of Chlorella were tested for DNA homologies to prove the reliability of the taxonomical interpretation.  相似文献   
10.
We report the partial amino acid sequence of chicken intestinal microvillar 110-kDa protein that, as a complex with calmodulin, has previously been shown to exhibit myosin-like ATPase and actin-binding activities. The sequence shows a high degree of similarity to the sequence of a novel vertebrate myosin I-like heavy chain encoded by a cDNA isolated from bovine intestine. This confirms that the bovine and chicken proteins are the first examples of Acanthamoeba myosin I-like proteins from higher eukaryotes. Comparison of available structural and functional data leads us to postulate that the myosin I family of proteins result from the fusion of a conserved myosin headlike motor domain, with variable COOH-terminal domains responsible for binding to specific intracellular structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号