首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G Jung  C J Schmidt  J A Hammer 《Gene》1989,82(2):269-280
We have determined the complete sequence and structure of a second myosin I heavy-chain gene from Acanthamoeba castellanii. This gene, which we have named MIL, spans approx. 6kb, is split by 17 introns, encodes a 1147-aa polypeptide, and is transcribed in log-phase cells. The positions of six of the introns are conserved relative to a vertebrate muscle myosin gene. Similar to the previously characterized MIB heavy-chain gene, the deduced MIL heavy-chain aa sequence reveals a 125-kDa protein composed of a myosin globular head domain joined to a novel, approx. 50-kDa C-terminal domain that is rich in glycine, proline and alanine residues. There are differences, however, between MIL and MIB in the sequence organization of their unconventional C-terminal domains. We conclude from this and other data that Acanthamoeba express at least three myosin I heavy-chain isoforms: MIL, plus MIA and MIB, whose purifications have been published previously. Amoeba genomic DNA blots probed with a short, highly conserved sequence whose position is transposed between MIB and MIL indicate that the Acanthamoeba myosin I heavy-chain gene family may actually contain as many as six genes. Finally, we compared the myosin I sequences with those of two related proteins, Drosophila NinaC and the bovine myosin I-like protein, and found that a portion of the unconventional C-terminal domains of the amoeba myosins I and the bovine protein appear to be related.  相似文献   

2.
Two proteins with myosin light chain kinase activity and electrophoretic molecular weights of 155,000 and 130,000 were each isolated from bovine stomach smooth muscle [Kuwayama, H., Suzuki, M., Koga, R., & Ebashi, S. (1988) J. Biochem. 104, 862-866]. The 155 kDa component showed a much higher superprecipitation-inducing activity than the 130 kDa component, when compared on the basis of equivalent myosin light chain kinase activity. In this study, we isolated a cDNA for the entire coding region of the 155 kDa protein. The deduced amino acid sequence revealed a high degree of similarity to those of chicken and rabbit smooth muscle myosin light chain kinases. Multiple motifs, such as three repeats of an immunoglobulin C2-like domain, a fibronectin type III domain, and unusual 20 repeats of 12 amino acids were detected in the sequence. Part of the amino-terminal sequence was similar to that of the actin- and calmodulin-binding domain of smooth muscle caldesmon. These observations suggest that the 155 kDa protein has additional functions other than its enzymatic activity. Two mRNAs of 6.0 and 2.6 kb in length in the bovine stomach smooth muscle RNAs were hybridized with cDNA probes. The 2.6-kb RNA probably encodes telokin, which is the carboxyl terminus of smooth muscle myosin light chain kinase. mRNAs with identical lengths were also detected in bovine aorta.  相似文献   

3.
A synthetic peptide representing the calmodulin-binding domain of rabbit skeletal muscle myosin light chain kinase (K-R-R-W-K-K-N-F-I-A-V-S-A-A-N-R-F-K-K-I-S-S-S-G-A-L) was used as an antigen to produce a monoclonal antibody. The antibody (designated MAb RSkCBP1, of the IgM class) reacted with similar affinity (KD approximately 20 nM) by competitive enzyme-linked immunoassay (ELISA) with the antigen peptide and intact rabbit skeletal muscle myosin light chain kinase. MAb RSkCBP1 inhibited rabbit skeletal muscle myosin light chain kinase activity competitively with respect to calmodulin (Ki = 20 nM). The antibody also inhibited myosin light chain kinase activity in extracts of skeletal muscle from several mammalian species (rabbit, sheep, and bovine) and an avian species (chicken). The concentration of MAb RSKCBP1 required for 50% inhibition of enzyme activity was similar for the mammalian species (80 nM) but was significantly higher for the avian species (1.2 microM). A competitive ELISA protocol was used to analyze weak cross-reactivity to other calmodulin-binding peptides and proteins. This assay demonstrated no cross-reactivity with the venom peptides melittin or mastoparan; smooth muscle myosin light chain kinases from hog carotid, bovine trachea, or chicken gizzard; bovine brain calmodulin-dependent calcineurin; or rabbit skeletal muscle troponin I. These data support the contention that the synthetic peptide used as the antigen represents the calmodulin-binding domain of rabbit skeletal muscle myosin light chain kinase and that the calmodulin-binding domains of different calmodulin-regulated proteins may have distinct primary and/or higher order structures.  相似文献   

4.
A chimeric lambda DNA molecule containing the myosin alkali light-chain gene of Drosophila melanogaster was isolated. The encoded amino acid sequence was determined from the nucleic acid sequence of a cDNA homologous to the genomic clone. The identity of the encoded protein was established by two criteria: (i) sequence homology with the chicken alkali light-chain proteins and (ii) comparison of the two-dimensional gel electrophoretic pattern of the peptides synthesized by in vitro translation of hybrid-selected RNA to that of myosin alkali light-chain peptides extracted from Drosophila myofibrils. There is only one myosin alkali light-chain in D. melanogaster; its chromosomal location is region 98B . This gene is abundantly expressed during the development of larval as well as adult muscles. The Drosophila protein appears to contain one putative divalent cation-binding domain (an EF hand) as compared with the three EF hands present in chicken alkali light chains.  相似文献   

5.
Little is known about the important cellular substrates for protein kinase C and their potential roles in mediating protein kinase C-dependent processes. We evaluated the protein kinase C phosphorylation sites in a major cellular substrate for the kinase, a protein of apparent Mr 80,000 in bovine and 60,000 in chicken tissues; we have recently determined the primary sequences of these proteins and tentatively named them the myristoylated alanine-rich C kinase substrates. The proteins were purified to apparent homogeneity from bovine and chicken brains, phosphorylated with protein kinase C, digested with trypsin, and the phosphopeptides purified and sequenced. Four distinct phosphopeptides were identified from both the bovine and chicken proteins. Two of the phosphorylated serines were contained in the repeated motif FSFKK, one in the sequence LSGF, and one in the sequence SFK. All four sites were contained within a basic domain of 25 amino acids which was identical in the chicken and bovine proteins. All of the sites phosphorylated in the cell-free system appeared to be phosphorylated in intact cells; an additional site may have been present in the proteins from intact cells. The identity of the phosphorylation site domains from two proteins of overall 65% amino acid sequence identity suggests a potential role for this domain in the physiological function of the myristoylated alanine-rich C kinase substrate proteins.  相似文献   

6.
Actin filaments and photoreceptor membrane turnover   总被引:1,自引:0,他引:1  
The shape and turnover of photoreceptor membranes appears to depend on associated actin filaments. In dipterans, the photoreceptor membrane is microvillar. It is turned over by the addition of new membrane at the bases of the microvilli and by subsequent shedding, mostly from the distal ends. Each microvillus contains actin filaments as a component of its cytoskeletal core. Two myosin I-like proteins co-localize with the actin filaments. It is suggested that one of the myosin I-like proteins might be linked to the microvillar membrane. By interacting with the actin filaments, this motor should move the membrane of a microvillus in a distal direction, thus providing a possible mechanism for the turnover of the membrane. A vertebrate photoreceptor cell contains a small cluster of actin filaments in its connecting cilium at the site where new transductive disk membranes are formed. Disruption of the actin filaments perturbs disk morphogenesis. The most likely explanation for this perturbation is that the process of initiating a new disk is inhibited. Conventional myosin (myosin II) is found in the connecting cilium with the same distribution as actin. A simple model is proposed to illustrate how the actin-myosin system of the connecting cilium might function to initiate the morphogenesis of a disk membrane.  相似文献   

7.
A 5.6-kilobase cDNA clone has been isolated which includes the entire coding region for the myosin light chain kinase from rabbit uterine tissue. This cDNA, expressed in COS cells, encodes a Ca2+/calmodulin-dependent protein kinase with catalytic properties similar to other purified smooth muscle myosin light chain kinases. A module (TLKPVGNIKPAE), repeated sequentially 15 times, has been identified near the N terminus of this smooth muscle kinase. It is not present in chicken gizzard or rabbit skeletal muscle myosin light chain kinases. This repeat module and a subrepeat (K P A/V) are similar in amino acid content to repeated motifs present in other proteins, some of which have been shown to associate with chromatin structures. Immunoblot analysis after sodium dodecyl sulfate-polyacrylamide gel electrophoresis, used to compare myosin light chain kinase present in rabbit, bovine, and chicken smooth and nonmuscle tissues, showed that within each species both tissue types have myosin light chain kinases with indistinguishable molecular masses. These data suggest that myosin light chain kinases present in smooth and nonmuscle tissues are the same protein.  相似文献   

8.
Myosin light chain kinase purified from chicken white skeletal muscle (Mr = 150,000) was significantly larger than both rabbit skeletal (Mr = 87,000) and chicken gizzard smooth (Mr = 130,000) muscle myosin light chain kinases, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Km and Vmax values with rabbit or chicken skeletal, bovine cardiac, and chicken gizzard smooth muscle myosin P-light chains were very similar for the chicken and rabbit skeletal muscle myosin light chain kinases. In contrast, comparable Km and Vmax data for the chicken gizzard smooth muscle myosin light chain kinase showed that this enzyme was catalytically very different from the two skeletal muscle kinases. Affinity-purified antibodies to rabbit skeletal muscle myosin light chain kinase cross-reacted with chicken skeletal muscle myosin light chain kinase, but the titer of cross-reacting antibodies was approximately 20-fold less than the anti-rabbit skeletal muscle myosin light chain kinase titer. There was no detectable antibody cross-reactivity against chicken gizzard myosin light chain kinase. Proteolytic digestion followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or high performance liquid chromatography showed that these enzymes are structurally very different with few, if any, overlapping peptides. These data suggest that, although chicken skeletal muscle myosin light chain kinase is catalytically very similar to rabbit skeletal muscle myosin light chain kinase, the two enzymes have different primary sequences. The two skeletal muscle myosin light chain kinases appear to be more similar to each other than either is to chicken gizzard smooth muscle myosin light chain kinase.  相似文献   

9.
10.
The analysis of a chicken myosin heavy chain cDNA clone   总被引:1,自引:0,他引:1  
A cDNA library has been constructed in the plasmid pBR322 using a large size class of RNA derived from chicken embryonic leg muscle as the template material. A clone containing a 2350-base pair insert was selected and identified as coding for the myosin heavy chain sequence, based upon its ability to hybridize to genomic myosin heavy chain clones, and by direct nucleotide sequencing. Cross-hybridization experiments with myosin heavy chain genomic clones, and mRNAs derived from different muscle types were used to explore the heterogeneity of the various myosin heavy chain isoforms at the level of the coding sequences. Although extensive sequence homology with the other isoforms was observed, a fast white isoform-specific subclone was constructed, and used to demonstrate that different genes code for the adult and embryonic fast white myosin heavy chain proteins.  相似文献   

11.
Vascular smooth muscle caldesmon   总被引:10,自引:0,他引:10  
Caldesmon, a major actin- and calmodulin-binding protein, has been identified in diverse bovine tissues, including smooth and striated muscles and various nonmuscle tissues, by denaturing polyacrylamide gel electrophoresis of tissue homogenates and immunoblotting using rabbit anti-chicken gizzard caldesmon. Caldesmon was purified from vascular smooth muscle (bovine aorta) by heat treatment of a tissue homogenate, ion-exchange chromatography, and affinity chromatography on a column of immobilized calmodulin. The isolated protein shared many properties in common with chicken gizzard caldesmon: immunological cross-reactivity, Ca2+-dependent interaction with calmodulin, Ca2+-independent interaction with F-actin, competition between actin and calmodulin for caldesmon binding only in the presence of Ca2+, and inhibition of the actin-activated Mg2+-ATPase activity of smooth muscle myosin without affecting the phosphorylation state of myosin. Maximal binding of aorta caldesmon to actin occurred at 1 mol of caldesmon: 9-10 mol of actin, and binding was unaffected by tropomyosin. Half-maximal inhibition of the actin-activated myosin Mg2+-ATPase occurred at approximately 1 mol of caldesmon: 12 mol of actin. This inhibition was also unaffected by tropomyosin. Caldesmon had no effect on the Mg2+-ATPase activity of smooth muscle myosin in the absence of actin. Bovine aorta and chicken gizzard caldesmons differed in several respects: Mr (149,000 for bovine aorta caldesmon and 141,000 for chicken gizzard caldesmon), extinction coefficient (E1%280nm = 19.5 and 5.0 for bovine aorta and chicken gizzard caldesmon, respectively), amino acid composition, and one-dimensional peptide maps obtained by limited chymotryptic and Staphylococcus aureus V8 protease digestion. In a competitive enzyme-linked immunosorbent assay, using anti-chicken gizzard caldesmon, a 174-fold molar excess of bovine aorta caldesmon relative to chicken gizzard caldesmon was required for half-maximal inhibition. These studies establish the widespread tissue and species distribution of caldesmon and indicate that vascular smooth muscle caldesmon exhibits physicochemical differences yet structural and functional similarities to caldesmon isolated from chicken gizzard.  相似文献   

12.
Amino acid sequences of peptides containing the phosphorylation site of bovine cardiac myosin light chain (L2) were determined. The site was localized to a serine residue in the tentative amino terminus of the light chain and is homologous to phosphorylation sites in other myosin light chains. Phosphorylation of bovine cardiac light chain by chicken gizzard myosin light chain kinase was Ca2+-calmodulin dependent. Kinetic data gave a Km of 107; microM and a Vmax of 23.6 mumol min-1 mg-1. In contrast to what has been observed with smooth muscle light chains, neither the phosphorylation site fragment of the cardiac light chain nor a synthetic tetradecapeptide containing the phosphorylation site were effectively phosphorylated by the chicken gizzard kinase. Phosphorylation of cardiac myosin light chains by chicken gizzard myosin light chain kinase, therefore, requires other regions of the light chain in addition to a phosphate acceptor site.  相似文献   

13.
Although the complete amino-acid sequence of the short subfragment-2 (short S-2) and the partial sequence of the hinge region derived from adult chicken skeletal muscle myosin have been reported previously, the sequence of the N-terminal portion of subfragment-2 (S-2) and the connective portion between the above two regions could not be determined. In this study, the amino-acid sequence of these undetermined portions were completely sequenced. Furthermore, overlaps of cyanogen bromide (CNBr) peptides in the hinge region were also isolated and sequenced. Peptides obtained by hydrolysis with dilute formic acid and by digestion with lysyl endopeptidase of S-2 were purified and sequenced. These results established the complete amino-acid sequence of S-2 composed of 429 amino-acid residues. This sequence of adult chicken skeletal muscle myosin was compared with that of chicken embryonic skeletal muscle, chicken gizzard muscle and rabbit cardiac muscle myosin (alpha-myosin heavy chain) and shows degrees of 96%, 38% and 84% sequence identities, respectively. The frequency with which hydrophobic residues are present at position "a" in seven-residues repeats of the hinge region was markedly reduced when compared to the short S-2 sequence of the chicken skeletal muscle myosin.  相似文献   

14.
《The Journal of cell biology》1989,109(6):2895-2903
The actin bundle within each microvillus of the intestinal brush border is laterally tethered to the membrane by bridges composed of the protein complex, 110-kD-calmodulin. Previous studies have shown that avian 110-kD-calmodulin shares many properties with myosins including mechanochemical activity. In the present study, a cDNA molecule encoding 1,000 amino acids of the 110-kD protein has been sequenced, providing direct evidence that this protein is a vertebrate homologue of the tail-less, single-headed myosin I first described in amoeboid cells. The primary structure of the 110-kD protein (or brush border myosin I heavy chain) consists of two domains, an amino-terminal "head" domain and a 35-kD carboxy-terminal "tail" domain. The head domain is homologous to the S1 domain of other known myosins, with highest homology observed between that of Acanthamoeba myosin IB and the S1 domain of the protein encoded by bovine myosin I heavy chain gene (MIHC; Hoshimaru, M., and S. Nakanishi. 1987. J. Biol. Chem. 262:14625- 14632). The carboxy-terminal domain shows no significant homology with any other known myosins except that of the bovine MIHC. This demonstrates that the bovine MIHC gene most probably encodes the heavy chain of bovine brush border myosin I (BBMI). A bacterially expressed fusion protein encoded by the brush border 110-kD cDNA binds calmodulin. Proteolytic removal of the carboxy-terminal domain of the fusion protein results in loss of calmodulin binding activity, a result consistent with previous studies on the domain structure of the 110-kD protein. No hydrophobic sequence is present in the molecule indicating that chicken BBMI heavy chain is probably not an integral membrane protein. Northern blot analysis of various chicken tissue indicates that BBMI heavy chain is preferentially expressed in the intestine.  相似文献   

15.
Subfragment-1 was prepared from adult chicken pectoralis myosin by limited digestion with alpha-chymotrypsin, and an amino-terminal 23 kDa fragment of the heavy chain was obtained by digesting the subfragment-1 with trypsin. The 205-residue sequence of the fragment was determined by sequencing its cyanogen bromide, tryptic, and chymotryptic peptides. The amino-terminal alpha-amino group of the fragment was acetylated, and two methylated lysines; epsilon-N-monomethyllysine and epsilon-N-trimethyllysine were recognized at the 35th and 130th positions, respectively, as in rabbit skeletal myosin. Comparing the 205-residue sequence of the skeletal myosin with those of cardiac, and gizzard myosins from chicken, considerable differences are recognized, especially in the amino-terminal region, but strong homologies are observed around the reactive lysine residue, around the epsilon-N-trimethyllysine residue, and around the consensus sequence of GXXGXGKT for nucleotide-binding proteins. On the other hand, only 12 amino acid substitutions are recognized between adult and embryonic skeletal myosins, allowing for the post-translational methylation.  相似文献   

16.
Two-dimensional mapping of the tryptic phosphopeptides generated following in vitro protein kinase C phosphorylation of the myosin heavy chain isolated from human platelets and chicken intestinal epithelial cells shows a single radioactive peptide. These peptides were found to comigrate, suggesting that they were identical, and amino acid sequence analysis of the human platelet tryptic peptide yielded the sequence -Glu-Val-Ser-Ser(PO4)-Leu-Lys-. Inspection of the amino acid sequence for the chicken intestinal epithelial cell myosin heavy chain (196 kDa) derived from cDNA cloning showed that this peptide was identical with a tryptic peptide present near the carboxyl terminal of the predicted alpha-helix of the myosin rod. Although other vertebrate nonmuscle myosin heavy chains retain neighboring amino acid sequences as well as the serine residue phosphorylated by protein kinase C, this residue is notably absent in all vertebrate smooth muscle myosin heavy chains (both 204 and 200 kDa) sequenced to date.  相似文献   

17.
The present experiments showed that the guinea pig antiserum prepared against the main polypeptides of 14 S dynein from Tetrahymena cilia reacted with sea urchin sperm flagellar dynein and with bovine brain high molecular weight protein to give rise to a precipitin line confluent with that formed between the antiserum and Tetrahymena dynein. Furthermore, it was found that this antiserum also reacted with tubulins from Tetrahymena cilia, sea urchin sperm flagella and bovine brain to give rise to the confluent precipitin line. Among muscle proteins, only actin preparation from rabbit skeletal muscle reacted with the anti-Tetrahymena dynein serum, whereas neither rabbit skeletal muscle myosin, chicken skeletal muscle tropomyosin nor chicken skeletal muscle troponin reacted with the antiserum. These results suggest that dynein and tubulin and probably actin share an antigenic determinant regardless of different protein species and of different animal species. The common antigenic determinant was detected only when the proteins denatured with urea/sodium dodecyl sulfate/beta-mercaptoethanol/N-ethylmaleimide were used, but it was not detected at all when the native proteins were used. This implies that a certain common antigenic determinant which is involved in the precipitin line formation exists in the primary structures of dyneins and tubulins and probably actin, and is hidden inside the tertiary structures of the native protein molecules.  相似文献   

18.
Three Markov models (Dayhoff, Proportional and Poisson models; Hasegawa et al., 1992a) for amino acid substitution during evolution were used for maximum likelihood analyses of proteins coded for in mitochondrial DNA in estimating a phylogenetic tree among human, bovine and murids (mouse and rat) with chicken as an outgroup. It turned out that Dayhoff model is the most appropriate model among the alternatives in approximating the amino acid substitutions of proteins coded for in mitochondrial DNA. In spite of the presence of the complete sequence data of mitochondrial genomes, we could not resolve the trichotomy among human, bovine and murids, probably because the time length separating two branching events among these three lines was short and because chicken is too distant from mammals to be used as an outgroup. It was suggested that the average substitution rate of amino acids coded for in mitochondrial DNA is lower along the bovine line than those along the human or murid lines. Advantages of amino acid sequence analysis over nucleotide sequence analysis in phylogenetic study were discussed.  相似文献   

19.
The binding of calmodulin to myelin basic protein and histone H2B.   总被引:4,自引:1,他引:3       下载免费PDF全文
1. A calmodulin-binding protein of apparent mol.wt. 19 000 has been purified from chicken gizzard. Similar proteins have been isolated from bovine uterus, rabbit skeletal muscle and rabbit liver. 2. These proteins migrated as an equimolar complex with bovine brain calmodulin on electroporesis on polyacrylamide gels in the presence of Ca2+ and 6M-urea. The complex was dissociated in the presence of EGTA. 2. The chicken gizzard calmodulin-binding protein has been shown to be identical with chicken erythrocyte histone H2B on the basis of partial amino acid sequence determination. 4. The calmodulin-binding proteins of apparent mol.wt. 22 000 isolated previously from bovine brain [Grand & Perry (1979) Biochem. J. 183, 285-295] has been shown, on the basis of partial amino-acid-sequence determination, to be identical with myelin basic protein. 5. The activation of bovine brain phosphodiesterase by calmodulin is inhibited by excess bovine uterus calmodulin-binding protein (histone H2B). 6. The phosphorylation of myelin basic protein by phosphorylase kinase is partially inhibited, whereas the phosphorylation of uterus calmodulin-binding protein (histone H2B) is unaffected by calmodulin or troponin C. 7. The subcellular distribution of myelin basic protein and calmodulin suggests that the two proteins do not exist as a complex in vivo.  相似文献   

20.
The amino-acid sequence of a short subfragment-2 in the amino-terminal portion of subfragment-2 (S-2) derived from adult chicken skeletal muscle myosin was completely determined. Peptides cleaved by cyanogen bromide and by lysyl endopeptidase of S-carboxymethylated S-2, and hydrolytic peptides obtained with trypsin or dilute acetic acid of larger CNBr fragments were isolated and sequenced. This region was composed of 257 amino-acid residues, and hydrophobic and charged residue repeat units were found highly conserved and with a periodicity in 7 or 28 residues. This sequence of the short S-2 fragment of chicken skeletal muscle myosin was compared with the sequence of chicken and rat embryonic skeletal muscle myosins, rabbit skeletal and rabbit cardiac muscle myosin (alpha-myosin heavy chain), and 95.3%, 86.8%, 89.9% and 94.2% sequence identities were observed, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号