首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64360篇
  免费   4368篇
  国内免费   2776篇
  2023年   1054篇
  2022年   1148篇
  2021年   2061篇
  2020年   2024篇
  2019年   2730篇
  2018年   2418篇
  2017年   1616篇
  2016年   1730篇
  2015年   2167篇
  2014年   3675篇
  2013年   4753篇
  2012年   2659篇
  2011年   3463篇
  2010年   2522篇
  2009年   2861篇
  2008年   2907篇
  2007年   3030篇
  2006年   2682篇
  2005年   2485篇
  2004年   2200篇
  2003年   1918篇
  2002年   1803篇
  2001年   1412篇
  2000年   1218篇
  1999年   1133篇
  1998年   1055篇
  1997年   952篇
  1996年   916篇
  1995年   855篇
  1994年   802篇
  1993年   749篇
  1992年   710篇
  1991年   661篇
  1990年   523篇
  1989年   503篇
  1988年   457篇
  1987年   387篇
  1986年   339篇
  1985年   493篇
  1984年   743篇
  1983年   502篇
  1982年   571篇
  1981年   494篇
  1980年   407篇
  1979年   365篇
  1978年   279篇
  1977年   234篇
  1976年   231篇
  1975年   137篇
  1973年   150篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   
2.
Plant somatic cells have the capability to switch their cell fates from differentiated to undifferentiated status under proper culture conditions, which is designated as totipotency. As a result, plant cells can easily regenerate new tissues or organs from a wide variety of explants. However, the mechanism by which plant cells have such remarkable regeneration ability is still largely unknown. In this study, we used a set of meristem-specific marker genes to analyze the patterns of stem cell differentiation in the processes of somatic embryogenesis as well as shoot or root organogenesis in vitro. Our studies furnish preliminary and important information on the patterns of the de novo stem cell differentiation during various types of in vitro organogenesis.  相似文献   
3.
Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN4) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN4 appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS4), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN4. The inhibitory effect of fluoride ions on the membrane binding of both AlPcN4 and AlPcS4 supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN4 and AlPcS4 in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN4 and AlPcS4 as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN4 with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN4 fluorescence quenching.  相似文献   
4.
5.
《Cell reports》2020,30(1):112-123.e4
  1. Download : Download high-res image (131KB)
  2. Download : Download full-size image
  相似文献   
6.
In C. elegans, cell death can be readily studied at the cellular, genetic, and molecular levels. Two types of death have been characterized in this nematode: (1) programmed cell death, which occurs as a normal component in development; and (2) pathological cell death which occurs aberrantly as a consequence of mutation. Analysis of mutations that disrupt programmed cell death in various ways has defined a genetic pathway for programmed cell death which includes genes that perform such functions as the determination of which cells die, the execution of cell death, the engulfment of cell corpses, and the digestion of DNA from dead cells. Molecular analysis is providing insightinto the nature of the molecules that function in these aspects of programmed cell death. Characterization of some genes that mutate to induce abnormal cell death has defined a novel gene family called degenerins that encode putative membrane proteins. Dominant alleles of at least two degenerin genes, mec-4 and deg-1, can cause cellular swelling and late onset neurodegeneration of specific groups of cells. © 1992 John Wiley & Sons, Inc.  相似文献   
7.
THE TIMING OF DIVISION IN CHLAMYDOMONAS   总被引:3,自引:2,他引:1  
  相似文献   
8.
《Cell reports》2020,30(1):98-111.e5
  1. Download : Download high-res image (124KB)
  2. Download : Download full-size image
  相似文献   
9.
Summary The feasibility of using plant cell culture to measure toxicity was determined by investigating the toxicological effects of three chemical compounds, allyl alcohol, propargylglycine, and cadmium chloride, on cell cultures ofCatharanthus roseus G. Don (Madagascar periwinkle). Suspension cultures ofC. roseus were maintained in modified B5 medium and transferred every 5 d. Five-day-old cell cultures were exposed to various concentrations (10,3,1,0.3,0.1,0.03,0.01,0.003,0.001,0.0003,0.0001, 0.00003, and 0.0 mM) of the toxicants in both acute and chronic toxicity tests. In the acute test, cells were exposed to the toxicant for 24 h, washed three times with sterile medium, and plated in petri plates with an equal volume of 1.4% agar medium. Cells in the chronic test were plated with an equal volume of 1.4% agar medium containing various concentrations of the toxicant. Cells were incubated 28 d at 30°C in the dark. The colonies were counted and the results plotted as percent survival versus toxicant concentration. The results indicate, at the concentrations tested, thatC. roseus assay may be feasible in that it fulfills the criteria for a practical assay (e.g., rapid, simple, quantifiable, and reproducible). This work was submitted to the faculty of Miami University in partial fulfillment of the requirements for the degree of Master of Environmental Science, Institute of Environmental Sciences.  相似文献   
10.
To evaluate the influence of cell density on the activity of fibroblast prolidase (EC 3.4.13.9), we determined this activity in sparse and dense cultures. We also investigated, the effects of different concentrations of β-d(?) fructose and l(+) ascorbate, which both increased cell density at confluency. For a fructose concentration of 25 mM, we observed that in the absence of glucose, intracellular total proteins increased 1.5-fold and prolidase specific activity, 1.8-fold. For ascorbate, a broad optimum concentration was found (range 0.01 – 0.50 mM). Addition to cultures of 0.1 mM ascorbate increased total proteins 1.4-fold, and doubled prolidase activity. This investigation was prompted by our previous results [J. Metab. Dis. 1983, 6, 27–31], confirmed here, and suggesting that increased prolidase activity at confluency was due to a rise in cell density.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号