首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   5篇
  国内免费   3篇
  2023年   1篇
  2022年   6篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   5篇
  2013年   36篇
  2012年   17篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
  1991年   1篇
  1990年   1篇
  1984年   2篇
  1983年   6篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
1.
Summary We tested whether larval black flies actively control the positioning of their feeding appendages (labral fans), and if so, whether their posture represents a balance between the conflicting demands of drag and feeding. We compared the postures of live larvae with the postures of larvae killed by heat-shock in three different flow regimes in a laboratory experiment; we assumed that the postures of heat-killed larvae approximated a passive response to drag. The average height of the labral fans above the bed declined significantly in faster flows, and was significantly greater in live than dead larvae. There was also a significant interaction effect, since the difference between the fan heights of live and dead larvae was greater in slower flows. Two mechanisms may contribute to this result. Larvae in slower flows have to increase their fan heights more than larvae living in faster flows to achieve comparable increases in velocity and thus particle flux. In addition, muscular strength may limit the feeding postures larvae can assume. The fan heights of live larvae also varied depending on the concentration of food particles: larvae exposed to low food concentrations held their fans higher above the bed than did larvae exposed to high food concentrations in the same flow regime. This change in posture is due neither to an uneven particle concentration in the boundary layer nor to added drag from particles trapped in the labral fans. Collectively, our results indicate that these suspension feeders actively control their feeding posture, and suggest that these varying postures represent a dynamic balance between the conflicting needs of minimizing drag and maximizing feeding.  相似文献   
2.
T Ohnuki  T Imanaka  S Aiba 《Gene》1983,25(1):155-159
Thirty independent actinomycetes strains carrying plasmids were isolated from soil. These plasmids were purified as cccDNA by CsCl-EtBr equilibrium density-gradient centrifugation. Plasmids that induce "pocks", namely formation of circular zones of sporulation-inhibition, were selected by protoplast transformation of streptomycin-producing strain, Streptomyces griseus ATCC10137. Six pock-forming plasmids, pOA7, pOA11, pOA15, pOA23, pOA29 and pOA30, were obtained, and their cleavage maps, transformation frequencies, and copy numbers, as well as their stability, are described.  相似文献   
3.
Culturing cells in 3D on appropriate scaffolds is thought to better mimic the in vivo microenvironment and increase cell-cell interactions. The resulting 3D cellular construct can often be more relevant to studying the molecular events and cell-cell interactions than similar experiments studied in 2D. To create effective 3D cultures with high cell viability throughout the scaffold the culture conditions such as oxygen and pH need to be carefully controlled as gradients in analyte concentration can exist throughout the 3D construct. Here we describe the methods of preparing biocompatible pH responsive sol-gel nanosensors and their incorporation into poly(lactic-co-glycolic acid) (PLGA) electrospun scaffolds along with their subsequent preparation for the culture of mammalian cells. The pH responsive scaffolds can be used as tools to determine microenvironmental pH within a 3D cellular construct. Furthermore, we detail the delivery of pH responsive nanosensors to the intracellular environment of mammalian cells whose growth was supported by electrospun PLGA scaffolds. The cytoplasmic location of the pH responsive nanosensors can be utilized to monitor intracellular pH (pHi) during ongoing experimentation.  相似文献   
4.
Bone morphogenetic protein 2 (BMP-2) is a growth factor embedded in the extracellular matrix of bone tissue. BMP-2 acts as trigger of mesenchymal cell differentiation into osteoblasts, thus stimulating healing and de novo bone formation. The clinical use of recombinant human BMP-2 (rhBMP-2) in conjunction with scaffolds has raised recent controversies, based on the mode of presentation and the amount to be delivered. The protocol presented here provides a simple and efficient way to deliver BMP-2 for in vitro studies on cells. We describe how to form a self-assembled monolayer consisting of a heterobifunctional linker, and show the subsequent binding step to obtain covalent immobilization of rhBMP-2. With this approach it is possible to achieve a sustained presentation of BMP-2 while maintaining the biological activity of the protein. In fact, the surface immobilization of BMP-2 allows targeted investigations by preventing unspecific adsorption, while reducing the amount of growth factor and, most notably, hindering uncontrolled release from the surface. Both short- and long-term signaling events triggered by BMP-2 are taking place when cells are exposed to surfaces presenting covalently immobilized rhBMP-2, making this approach suitable for in vitro studies on cell responses to BMP-2 stimulation.  相似文献   
5.
Nanosecond Pulsed Laser Deposition (PLD) in the presence of a background gas allows the deposition of metal oxides with tunable morphology, structure, density and stoichiometry by a proper control of the plasma plume expansion dynamics. Such versatility can be exploited to produce nanostructured films from compact and dense to nanoporous characterized by a hierarchical assembly of nano-sized clusters. In particular we describe the detailed methodology to fabricate two types of Al-doped ZnO (AZO) films as transparent electrodes in photovoltaic devices: 1) at low O2 pressure, compact films with electrical conductivity and optical transparency close to the state of the art transparent conducting oxides (TCO) can be deposited at room temperature, to be compatible with thermally sensitive materials such as polymers used in organic photovoltaics (OPVs); 2) highly light scattering hierarchical structures resembling a forest of nano-trees are produced at higher pressures. Such structures show high Haze factor (>80%) and may be exploited to enhance the light trapping capability. The method here described for AZO films can be applied to other metal oxides relevant for technological applications such as TiO2, Al2O3, WO3 and Ag4O4.  相似文献   
6.
Microwave-assisted synthetic techniques were used to quickly and reproducibly produce silica nanoparticle sols using an acid catalyst with nanoparticle diameters ranging from 30-250 nm by varying the reaction conditions. Through the selection of a microwave compatible solvent, silicic acid precursor, catalyst, and microwave irradiation time, these microwave-assisted methods were capable of overcoming the previously reported shortcomings associated with synthesis of silica nanoparticles using microwave reactors. The siloxane precursor was hydrolyzed using the acid catalyst, HCl. Acetone, a low-tan δ solvent, mediates the condensation reactions and has minimal interaction with the electromagnetic field. Condensation reactions begin when the silicic acid precursor couples with the microwave radiation, leading to silica nanoparticle sol formation. The silica nanoparticles were characterized by dynamic light scattering data and scanning electron microscopy, which show the materials'' morphology and size to be dependent on the reaction conditions. Microwave-assisted reactions produce silica nanoparticles with roughened textured surfaces that are atypical for silica sols produced by Stöber''s methods, which have smooth surfaces.  相似文献   
7.
Successful tissue engineering involves the combination of scaffolds with appropriate cells in vitro or in vivo. Scaffolds may be synthetic, naturally-derived or derived from tissues/organs. The latter are obtained using a technique called decellularization. Decellularization may involve a combination of physical, chemical, and enzymatic methods. The goal of this technique is to remove all cellular traces whilst maintaining the macro- and micro-architecture of the original tissue.Intestinal tissue engineering has thus far used relatively simple scaffolds that do not replicate the complex architecture of the native organ. The focus of this paper is to describe an efficient decellularization technique for rat small intestine. The isolation of the small intestine so as to ensure the maintenance of a vascular connection is described. The combination of chemical and enzymatic solutions to remove the cells whilst preserving the villus-crypt axis in the luminal aspect of the scaffold is also set out. Finally, assessment of produced scaffolds for appropriate characteristics is discussed.  相似文献   
8.
We describe a nanomoulding technique which allows low-cost nanoscale patterning of functional materials, materials stacks and full devices. Nanomoulding combined with layer transfer enables the replication of arbitrary surface patterns from a master structure onto the functional material. Nanomoulding can be performed on any nanoimprinting setup and can be applied to a wide range of materials and deposition processes. In particular we demonstrate the fabrication of patterned transparent zinc oxide electrodes for light trapping applications in solar cells.  相似文献   
9.
The purpose of this study was to compare physical demands during the most demanding scenarios (MDS) of different training sessions and official matches in professional basketball players across playing positions. Thirteen professional basketball players were monitored over a 9-week competitive season using a local positioning system. Peak physical demands included total distance, distance covered at > 18 km·h-1, distance and number of accelerations (≥ 2 m∙s-2) and decelerations (≤ -2 m∙s-2) over a 60-second epoch. Analysis of variance for repeated measures, Bonferroni post-hoc tests and standardised Cohen’s effect size (ES) were calculated. Overall, almost all physical demands during the MDS of training were lower (-6.2% to -35.4%) compared to official matches. The only variable that surpassed competition demands was distance covered at > 18 km·h-1, which presented moderate (ES = 0.61, p = 0.01) and small (ES = 0.48, p > 0.05) increases during training sessions four and three days before a competition, respectively. Conversely, the two previous practices before match day presented trivial to very large decreases (ES = 0.09–2.66) in all physical demands. Furthermore, centres achieved the lowest peak value in total distance covered during matches, forwards completed the greatest peak distance at > 18 km·h-1, and guards performed the greatest distance and number of high-intensity accelerations and decelerations. In conclusion, physical demands during the MDS of different training sessions across the microcycle failed to match or surpass peak values during official matches, which should be considered when prescribing a training process intended to optimise the MDS of match play.  相似文献   
10.
The aims of this study were to: (a) describe and compare the volume and intensity from the workload of professional soccer players between training and MD, and (b) analyse the effect that the length of the microcycle had on the workload. A cohort study was designed for a full season in La Liga 123. Wearable tracking systems collected the distance covered in meters (m), total number of high-intensity accelerations (ACCHIGH) and decelerations (DECHIGH), total number of high-speed running actions (HSRA), high-speed running distance (HSRD), high metabolic load distance (HMLD), and player load (PL) from training days (MD+1, MD-4, MD-3, MD-2, and MD-1) and MD. Significant differences were found between training and MD workload, MD workload being the most demanding for all intensity and volume variables (F = 36.35–753.94; p < 0.01; wp2 = 0.21–0.85). The greatest training intensity and volume were found on MD-4 and MD-3 (p < 0.05). In addition, a novel finding was that the length of the microcycle had a significant effect on the workload both in volume and intensity (F = 4.84–14.19; p < 0.01; wp2 = 0.03–0.09), except for relative ACCHIGH, DECHIGH, and HMLD. Although MD-4 and MD-3 were the most suitable days for loading the players, the results showed that MD elicited a unique stimulus in terms of volume and intensity. Consequently, coaches need to include specific training drills to adapt the players for the competitive demands. Finally, special focus should be placed on MD from short and regular microcycles (5-day, 6-day, or 7-day microcycles) since declines in physical performance were observed in comparison with long microcycles (8-day or 9-day microcycles).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号