首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   720篇
  免费   49篇
  2023年   5篇
  2022年   2篇
  2021年   20篇
  2020年   15篇
  2019年   18篇
  2018年   15篇
  2017年   22篇
  2016年   28篇
  2015年   45篇
  2014年   50篇
  2013年   65篇
  2012年   75篇
  2011年   66篇
  2010年   35篇
  2009年   33篇
  2008年   53篇
  2007年   44篇
  2006年   41篇
  2005年   24篇
  2004年   27篇
  2003年   20篇
  2002年   21篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1985年   2篇
  1982年   1篇
  1970年   2篇
  1969年   1篇
排序方式: 共有769条查询结果,搜索用时 15 毫秒
1.
Multiple Listeria monocytogenes strains can be present in the same food sample; moreover, infection with more than one L. monocytogenes strain can also occur. In this study we investigated the impact of strain competition on the growth and in vitro virulence potential of L. monocytogenes. We identified two strong competitor strains, whose growth was not (or only slightly) influenced by the presence of other strains and two weak competitor strains, which were outcompeted by other strains. Cell contact was essential for growth inhibition. In vitro virulence assays using human intestinal epithelial Caco2 cells showed a correlation between the invasion efficiency and growth inhibition: the strong growth competitor strains showed high invasiveness. Moreover, invasion efficiency of the highly invasive strain was further increased in certain combinations by the presence of a low invasive strain. In all tested combinations, the less invasive strain was outcompeted by the higher invasive strain. Studying the effect of cell contact on in vitro virulence competition revealed a complex pattern in which the observed effects depended only partially on cell-contact suggesting that competition occurs at two different levels: i) during co-cultivation prior to infection, which might influence the expression of virulence factors, and ii) during infection, when bacterial cells compete for the host cell. In conclusion, we show that growth of L. monocytogenes can be inhibited by strains of the same species leading potentially to biased recovery during enrichment procedures. Furthermore, the presence of more than one L. monocytogenes strain in food can lead to increased infection rates due to synergistic effects on the virulence potential.  相似文献   
2.
Angiotensin II(ANG II) has long been known for its pressor and growth-promotingeffects, which are both mediated by theAT1 receptor. By contrast, theAT2 receptor has recently beenreported to mediate inhibition of proliferation through as yetundefined mechanisms. We report here that in bovine adrenal fasciculata cells ANG II by itself does not affect growth but inhibits basic fibroblast growth factor (bFGF)-induced DNA synthesis and blocks thecells in G1 phase. Consistent withthis, ANG II inhibits cyclin D1 expression and cyclinD1-associated kinase activity. Theantimitogenic effect of ANG II is partly mimicked by theAT2-selective agonist CGP-42112.It is also blocked partly and in an additive fashion by theAT1- andAT2-selective antagonists losartanand PD-123319, indicating the contribution of both receptor subtypes tothis response. AT1-dependentantiproliferation is selectively blocked by the cyclooxygenaseinhibitor indomethacin and restored by prostaglandin E2, whereasAT2-receptor-mediated inhibitionof growth is suppressed by the tyrosine phosphatase inhibitorsorthovanadate and bpV(pic). Both pathways are, however,pertussis toxin sensitive. We hypothesize that, in fasciculatacells, the AT1 receptor inhibitsbFGF-induced proliferation by stimulating prostaglandin synthesis,whereas the AT2 receptor mediatesits effect through a pathway that requires protein tyrosine phosphataseactivation.

  相似文献   
3.
4.
5.
Lacerta pamphylica and Lacerta trilineata are two currently recognized green lizard species with a historically problematic taxonomy. In cases of tangled phylogenies, next-generation sequencing and double-digest restriction-site-associated DNA protocols can provide a wealth of genomic data and resolve difficult taxonomic issues. Here, we generated genome-wide SNPs and mitochondrial sequences, and applied molecular species delimitation approaches to provide a stable taxonomy for the Aegean green lizards. Mitochondrial gene trees, genetic cluster delimitation and population structure analyses converged into recognizing the populations of (a) L. pamphylica, (b) east Aegean islands, Anatolia and Thrace (diplochondrodes lineage), (c) central Aegean islands (citrovittata), and (d) remaining Balkan populations and islands (trilineata), as separate clusters. Phylogenomic analyses revealed a split into two major clades, east and west of the Aegean Barrier, unambiguously showing a sister–clade relationship between pamphylica and diplochondrodes, rendering L. trilineata paraphyletic. Species delimitation models were tested in a Bayesian framework using the genomic SNPs: lumping all populations into a single ‘species’ had the lowest likelihood but the current taxonomy was also outperformed by all other models. All lines of evidence support the Pamphylian green lizard as a valid species; thus, east Aegean L. trilineata should also be considered a distinct species under the name Lacerta diplochondrodes. Finally, evidence from the mitochondrial and nuclear genomes is overwhelmingly in favour of recognizing the morphologically distinct Cycladian green lizards as a distinct species. We propose their elevation to full species under the name Lacerta citrovittata. All remaining insular and continental populations of the Balkan Peninsula represent the species L. trilineata.  相似文献   
6.
Model-based online optimization has not been widely applied to bioprocesses due to the challenges of modeling complex biological behaviors, low-quality industrial measurements, and lack of visualization techniques for ongoing processes. This study proposes an innovative hybrid modeling framework which takes advantages of both physics-based and data-driven modeling for bioprocess online monitoring, prediction, and optimization. The framework initially generates high-quality data by correcting raw process measurements via a physics-based noise filter (a generally available simple kinetic model with high fitting but low predictive performance); then constructs a predictive data-driven model to identify optimal control actions and predict discrete future bioprocess behaviors. Continuous future process trajectories are subsequently visualized by re-fitting the simple kinetic model (soft sensor) using the data-driven model predicted discrete future data points, enabling the accurate monitoring of ongoing processes at any operating time. This framework was tested to maximize fed-batch microalgal lutein production by combining with different online optimization schemes and compared against the conventional open-loop optimization technique. The optimal results using the proposed framework were found to be comparable to the theoretically best production, demonstrating its high predictive and flexible capabilities as well as its potential for industrial application.  相似文献   
7.
8.
9.
Covalently closed circular RNA molecules (circRNAs) have recently emerged as a class of RNA isoforms with widespread and tissue specific expression across animals, oftentimes independent of the corresponding linear mRNAs. circRNAs are remarkably stable and sometimes highly expressed molecules. Here, we sequenced RNA in human peripheral whole blood to determine the potential of circRNAs as biomarkers in an easily accessible body fluid. We report the reproducible detection of thousands of circRNAs. Importantly, we observed that hundreds of circRNAs are much higher expressed than corresponding linear mRNAs. Thus, circRNA expression in human blood reveals and quantifies the activity of hundreds of coding genes not accessible by classical mRNA specific assays. Our findings suggest that circRNAs could be used as biomarker molecules in standard clinical blood samples.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号