首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   12篇
  国内免费   97篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   3篇
  2015年   5篇
  2014年   4篇
  2013年   4篇
  2012年   9篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   12篇
  2007年   6篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   5篇
  2002年   7篇
  2001年   8篇
  2000年   3篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
排序方式: 共有120条查询结果,搜索用时 46 毫秒
1.
真菌种类多,分布广,对人类的生产和生活关系非常密切,因此近来对真菌特别是丝状真菌的研究日益引起高度重视。1981—1990年我们对桂北龙胜县里骆林区、桂中宜山县庆远林区、桂南岑溪县七坪林区和桂西田林县老山林区森林土壤微生物区系进行了分析,其中丝状真菌是我们重点研究的内容之一。在上述森林土壤中共分离出丝状真菌2084株,经鉴定归属于25属。现将广西森林土壤丝状真菌生态分布的研究结果报道如下。  相似文献   
2.
森林土壤氮转化的微生物功能研究   总被引:2,自引:1,他引:1  
本文研究了不同林型下土壤(A+6层和A_1层)微生物、土壤酶活性在森林土壤氮转化中的作用。结果表明不同林型下土壤具有不同的固氮作用、反硝化作用、氨化作用和硝化作用速率,即阔叶林>针阔混交林>针叶林。已经证明,固氮作用主要存在于森林土壤的A_1层,反硝化作用主要存在于A_0层。森林土壤存在2种硝化作用过程,即由自养微生物所引起的自养硝化作用过程和异养微生物所引起的异养硝化作用过程。它的存在与林型有关,某些森林土壤中这2种硝化作用过程都存在,如针阔混交林下的A_0层和A_1层。有些林型下土壤,则以异养硝化作用过程为主,如针叶林的A_0层。  相似文献   
3.
我国森林土壤中苏云金芽孢杆生态分布的研究   总被引:7,自引:0,他引:7  
从我国8个森林立地带(寒温带、中温带、暖温带、北亚热带、中亚热带、南亚热带、高原亚热带、热带)所属的13个自然保护区,采集了0-5cm土层林下土壤样品384个,测定了土壤pH、水分和养分,从中分离观察芽孢杆菌菌落1873个,分离出苏云金芽孢杆菌79株,并对其所属亚种进行了初步鉴定,其平均出土率和分离率分别为14.32%和4.21%。研究了芽孢杆菌和苏云金芽孢杆菌在森林土壤中生态分布的规律及苏云金芽  相似文献   
4.
5.
朱立安  曾清苹  柳勇  柯欢  程炯  张会化  李俊杰 《生态学报》2020,40(13):4659-4669
富集重金属的枯落物分解可能提高重金属暴露率,增加人体接触健康风险。为了解南方城市土壤重金属在森林生态系统中的分布及流转情况,通过调查研究了佛山市8个典型森林群落土壤及枯落物重金属含量,分析了各森林群落枯落物对不同重金属的富集效应及重金属随枯落物回归土壤流通量。结果表明:1)城市森林各土壤重金属含量在不同典型群落间差异显著(P<0.05),差异最大为Pb、Cr、Zn,As、Cu、Ni次之,Hg、Cd最小;土层深度(0-20,20-40,40-60 cm)对重金属含量影响显著(P<0.05),差异最大为Cd、Hg,其次为As、Cu,最小为Zn、Ni、Pb、Cr。整体上,Cd、Hg、As、Pb、Zn在0-20 cm最高,表层富集特征明显,Cr和Ni在40-60 cm最高。2)8个森林群落中阴香-白楸-醉香含笑群落(CMMC)枯落物对8种重金属的综合富集系数(TBCF,66.76)最高,其中以Cd的富集效果最突出,富集系数为44.45,且对Pb、Cu、Zn也相对富集;最低的为黧蒴锥-香椿-樟树群落(CTCC),综合富集系数(TBCF)为8.09,仅对Cd、Cr、Cu相对富集,对其余重金属富集效应不明显。3)相关分析显示,群落重金属枯落物流通量与0-60 cm土壤重金属平均含量(Cr和Ni除外)无显著相关性。本研究对城市森林建设管理及筛选重金属富集植物及群落具有较强理论及实践意义。  相似文献   
6.
冻融交替对长白山不同林型土壤两种温室气体排放的影响   总被引:1,自引:0,他引:1  
以长白山5种林型土壤(硬阔叶林、红松阔叶林、次生白桦林、长白松林和蒙古栎林)为对象,利用原位培养连续取样法研究了冻融过程中5种林型土壤CO2和N2O排放特征及相关机理。结果表明:冻融期5种林型土壤是CO2和N2O的源。次生白桦林和红松阔叶林土壤CO2和N2O的平均通量显著高于其他3种林型。除硬阔叶林外,各林型土壤CO2通量与土壤含水量间存在显著负相关,但不同林型的土壤CO2排放对水分敏感性差异较大;除硬阔叶林外,各林型土壤N2O通量与土壤含水量间存在显著正相关,但水分敏感性因林型而异。5种林型土壤CO2和N2O排放通量均与土壤表层温度呈二次函数关系。  相似文献   
7.
为探究黄山松土壤可溶性有机质(DOM)数量和质量对短期氮(N)添加的响应及其与细菌群落的关联,在福建戴云山自然保护区设置不同N添加水平(0、40和80 kg N·hm-2·a-1)试验,采用三维荧光与平行因子联用法,并结合高通量测序手段分别对土壤DOM和细菌群落进行分析。结果表明: 与对照相比,N添加整体降低了0~10和10~20 cm土层可溶性有机碳(DOC)含量和DOM腐殖化指数(HIX),其中,高氮(80 kg N·hm-2·a-1)添加下均显著降低。平行因子分析法进一步表明N添加下DOM中类腐殖质组分(C1、C2)的相对含量降低。此外,N添加减少了富营养细菌(变形菌门、酸微菌纲)的相对丰度,而增加了贫营养细菌(斯巴达杆菌纲)的相对丰度。富营养细菌的相对丰度与HIX、C1、C2呈显著正相关,与相对易分解的类富里酸组分(C3)呈显著负相关;而贫营养细菌的情况则相反。说明N添加下不同生活策略的细菌类群对DOM中难分解和易分解组分存在明显的偏好性。我们推测N沉降加剧背景下土壤微生物生活策略的转变可能有助于DOM组分的塑造。  相似文献   
8.
通过野外模拟实验,研究3个氮沉降水平,CK(对照,0 kg·hm-2·a-1)、LN(低氮,30 kg·hm-2·a-1)和HN(高氮,100 kg·hm-2·a-1)处理对亚热带针叶(杉木)和阔叶(罗浮栲、浙江桂)森林土壤中微量元素Ni、Cu、Zn含量的影响。结果表明:就不同的林分来看,3种微量元素的含量大致呈杉木林>罗浮栲林>浙江桂林,施氮3 d后,浙江桂林和罗浮栲林土壤中3种微量元素在各处理之间差异不显著,仅发现杉木林土壤中的Ni含量在CK处理与LN及HN处理之间和无凋落物土壤中Cu含量在HN与CK及LN之间的差异显著; 3片林分中土壤表面有无凋落物处理总体对3种微量元素含量的影响不大。与施氮前相比,3片林分土壤中的Ni、Cu、Zn含量均有所下降,且浙江桂林在LN处理的降幅最大。  相似文献   
9.
土壤微生物生物量在森林生态系统中充当具有生物活性的养分积累和储存库。土壤微生物转化有机质为植物提供可利用养分, 与植物的相互作用维系着陆地生态系统的生态功能。同时, 土壤微生物也与植物争夺营养元素, 在季节交替过程和植物的生长周期中呈现出复杂的互利-竞争关系。综合全球数据对温带、亚热带和热带森林土壤微生物生物量碳(C)、氮(N)、磷(P)含量及其化学计量比值的季节动态进行分析, 发现温带和亚热带森林的土壤微生物生物量C、N、P含量均呈现夏季低、冬季高的格局。热带森林四季的土壤微生物生物量C、N、P含量都低于温带和亚热带森林, 且热带森林土壤微生物生物量C含量、N含量在秋季相对最低, 土壤微生物生物量P含量四季都相对恒定。温带森林的土壤微生物生物量C:N在春季显著高于其他两个森林类型; 热带森林的土壤微生物生物量C:N在秋季显著高于其他2个森林类型。温带森林土壤微生物生物量N:P和C:P在四季都保持相对恒定, 而热带森林土壤微生物生物量N:P和C:P在夏季高于其他3个季节。阔叶树的土壤微生物生物量C含量、N含量、N:P、C:P在四季都显著高于针叶树; 而针叶树的土壤微生物生物量P含量在四季都显著高于阔叶树。在春季和冬季时, 土壤微生物生物量C:N在阔叶树和针叶树之间都没有显著差异; 但是在夏季和秋季, 针叶树的土壤微生物生物量C:N显著高于阔叶树。对于土壤微生物生物量的变化来说, 森林类型是主要的显著影响因子, 季节不是显著影响因子, 暗示土壤微生物生物量的季节波动是随着植物其内在固有的周期变化而变化。植物和土壤微生物密切作用表现出来的对养分的不同步吸收是保留养分和维持生态功能的一种权衡机制。  相似文献   
10.
大气CO2浓度升高、降水格局改变、全球氮沉降增加和土地覆盖变化等全球变化不仅改变了森林土壤理化性质,而且影响了植物的生长和微生物活性,导致森林土壤碳、氮循环发生改变,进而影响土壤CH4的吸收.本研究综述了森林土壤CH4吸收的重要性,森林土壤CH4吸收对大气CO2浓度升高、降水格局改变、全球氮沉降增加和土地覆盖变化等全球变化的响应差异及驱动机制.大气CO2浓度升高抑制土壤CH4吸收;降水减少倾向于促进土壤CH4吸收;外源氮输入抑制富氮森林土壤CH4吸收,而对贫氮森林土壤CH4吸收则表现为促进或不影响;森林转化为草地、农田或人工林会减少土壤CH4的吸收量,而植树造林则会增加土壤CH4的吸收量.今后的研究重点是探讨全球变化对森林土壤CH4吸收产生长期影响和综合效应,并借助分子生物学方法进一步探究土壤CH4吸收的微生物学机制.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号