首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Urea is the major nitrogen (N) form supplied as fertilizer in agricultural plant production and also an important N metabolite in plants. Because urea transport in plants is not well understood, the aim of the present study was to isolate urea transporter genes from the model plant Arabidopsis. Using heterologous complementation of a urea uptake-defective yeast (Saccharomyces cerevisiae) mutant allowed to isolate AtTIP1;1, AtTIP1;2, AtTIP2;1, and AtTIP4;1 from a cDNA library of Arabidopsis. These cDNAs encode channel-like tonoplast intrinsic proteins (TIPs) that belong to the superfamily of major intrinsic proteins (or aquaporins). All four genes conferred growth of a urea uptake-defective yeast mutant on 2 mm urea in a phloretin-sensitive and pH-independent manner. Uptake studies using 14C-labeled urea into AtTIP2;1-expressing Xenopus laevis oocytes demonstrated that AtTIP2;1 facilitated urea transport also in a pH-independent manner and with linear concentration dependency. Expression studies showed that AtTIP1;2, AtTIP2;1, and AtTIP4;1 genes were up-regulated during early germination and under N deficiency in roots but constitutively expressed in shoots. Subcellular localization of green fluorescent protein-fused AtTIPs indicated that AtTIP1;2, AtTIP2;1, and AtTIP4;1 were targeted mainly to the tonoplast and other endomembranes. Thus, in addition to their role as water channels, TIP transporters may play a role in equilibrating urea concentrations between different cellular compartments.  相似文献   

2.
3.
The Arabidopsis thaliana Tonoplast Intrinsic Protein 1;1 (AtTIP1;1) is a member of the tonoplast aquaporin family. The tissue-specific expression pattern and intracellular localization of AtTIP1;1 were characterized using GUS and GFP fusion genes. Results indicate that AtTIP1;1 is expressed in almost all cell types with the notable exception of meristematic cells. The highest level of AtTIP1;1 expression was detected in vessel-flanking cells in vascular bundles. AtTIP1;1-GFP fusion protein labelled the tonoplast of the central vacuole and other smaller peripheral vacuoles. The fusion protein was not found evenly distributed along the tonoplast continuum but concentrated in contact zones of tonoplasts from adjacent vacuoles and in invaginations of the central vacuole. Such invaginations may result from partially engulfed small vacuoles. A knockout mutant was isolated and characterized to gain insight into AtTIP1;1 function. No phenotypic alteration was found under optimal growth conditions indicating that AtTIP1;1 function is not essential to the plant and that some members of the TIP family may act redundantly to facilitate water flow across the tonoplast. However, a conditional root phenotype was observed when mutant plants were grown on a glycerol-containing medium.  相似文献   

4.
Alpaslan  M.  Gunes  A. 《Plant and Soil》2001,236(1):123-128
A greenhouse study was conducted in order to determine interactive effects of NaCl salinity and B on the growth, sodium (Na), chloride (Cl), boron (B), potassium (K) concentrations and membrane permeability of salt resistant Tomato (Lycopersicon esculentum L. cv. Lale F1) and salt sensitive cucumber (Cucumis sativus L. cv. Santana F1) plants. Plants were grown in a factorial combination of NaCl (0 and 30 mM for cucumber and 0 and 40 mM for tomato) and B (0, 5, 10 and 20 mg kg–1 soil). Boron toxicity symptoms appeared at 5 mg kg–1 B treatments in both plants. Salinity caused an increase in leaf injury due to B toxicity, but it was more severe in cucumber. Dry weights of the plants decreased with the increasing levels of applied B in nonsaline conditions, but the decrease in dry weights due to B toxicity was more pronounced in saline conditions especially in cucumber. Salinity × B interaction on the concentration of B in both plants was found significant. However, increase in B concentrations of tomato decreased under saline conditions when compared to nonsaline conditions. Contrary to this, B concentration of cucumber increased as a result of increasing levels of applied B and salinity. Salinity increased Na and Cl concentrations of both plants.Potassium concentration of tomato was not affected by salinity and B treatments, but K concentration of cucumber was decreased by salinity. Membrane permeability of the plants was increased by salinity while toxic levels of B had no effect on membrane permeability in nonsaline conditions. Membrane permeability was significantly increased in the presence of salinity by the increasing levels of applied B.  相似文献   

5.
Boron (B) toxicity often limits crop yield and the quality of production in agricultural areas. Here, we investigated the effects of calcium (Ca), silicon (Si) and salicylic acid (SA) on development of B toxicity, B allocation in canola (Brassica napus cultivar Sarw 4) and its role in non-enzymatic antioxidants in relation to yield of this cultivar under B toxicity. Canola seedlings were subjected to four B levels induced by boric acid in the absence or presence of Ca, Si and SA. The results showed that Ca, Si and SA addition ameliorated the inhibition in canola growth, water content (WC), and improved siliqua number, siliqua weight and seed index. The B content in shoots and roots and total B accumulation in the whole plant were increased in control plants under B-toxicity-stress, and these parameters were significantly decreased by addition of Ca, Si and SA. The shoot ascorbate pool (ascorbate, AsA, and dehydroascorbate, DHA), α-tocopherol and phenolics (free and bound) were increased under B toxicity, and were significantly decreased in most cases by addition of Ca, Si and SA, except α-tocopherol, which increased at low B levels (0, 25 and 50 mg kg soil?1). The glutathione content did not obviously change by B stress, while added Ca, Si and SA inhibited its accumulation under B stress. In addition, B toxicity reduced the shoot flavonoids content; however, this reduction was not alleviated by the use of Ca, Si and SA treatments. It could be concluded that growth and yield of canola plants grown under high B concentration improved after external application of Ca, Si or SA.  相似文献   

6.
Ionic stress caused by high aluminum (Al) concentrations is one of the most widespread phytotoxicity problems globally in agricultural regions, greatly limiting crop yield in affected areas. The objective of this work was to examine a possible involvement of boron (B) in the detoxification of Al by stimulating glutathione (GSH) metabolism, a mechanism essential for the resistance of plants under stress conditions. Our results clearly demonstrate that increased application of B in the presence of high Al concentrations in the growth medium stimulates GSH biosynthesis, suggesting it could be an effective strategy to combat stress associated with the formation of active-oxygen species (AOS). In the specific case of Al toxicity, B reduces phytotoxicity by stimulating leaf biosynthesis of GSH and an increase in its concentration in the roots. Therefore, in this work, we also identify GSH metabolism as one of the key processes in Al detoxification. Finally, our results imply that greater B application leads to a greater resistance to Al toxicity, a fact that might be significant for higher productivity of agricultural plants grown in acid soils.  相似文献   

7.
Phosphorus, an essential plant nutrient, may become toxic when accumulated by plants to high concentrations. Certain plant species such as Verticordia plumosa L. suffer from P toxicity at solution concentrations far lower than most other plant species. In this study, exposure of V. plumosa plants to a solution containing as low as 3 mg l–1 P resulted in significant growth inhibition and typical symptoms of P toxicity. In a wide range of P levels studied, micronutrient concentrations in V. plumosa leaves were within the range considered adequate for optimal growth. Notably, tomato plants with high hexokinase activity due to overexpression of Arabidopsis hexokinase (AtHXK1) exhibited senescence symptoms similar to those of P toxic V. plumosa. The resemblance in senescence symptoms between P-toxic tomato plants and those with high hexokinase activity suggested that increased sugar metabolism could play a role in P toxicity in plants. To test this hypothesis, we determined the amount of hexose phosphate, the product of hexokinase, in V. plumosa leaves grown at various P levels in the nutrient solution. Positive correlations were found between concentration in the medium, P concentration in the plant, hexose phosphate concentration in leaves and P toxicity symptoms. Foliar Zn application suppressed P toxicity symptoms and reduced the level of hexose phosphate in leaves. Furthermore, Zn also inhibited hexokinase activity in vitro. Based on these results we suggest that P toxicity involves sugar metabolism via increased activity of hexokinase that accelerates senescence  相似文献   

8.
9.
10.
Aluminium (Al) toxicity is the most important limiting factor for crop production in acid soil environments worldwide. In some plant species, application of magnesium (Mg(2+)) can alleviate Al toxicity. However, it remains unknown whether overexpression of magnesium transport proteins can improve Al tolerance. Here, the role of AtMGT1, a member of the Arabidopsis magnesium transport family involved in Mg(2+) transport, played in Al tolerance in higher plants was investigated. Expression of 35S::AtMGT1 led to various phenotypic alterations in Nicotiana benthamiana plants. Transgenic plants harbouring 35S::AtMGT1 exhibited tolerance to Mg(2+) deficiency. Element assay showed that the contents of Mg, Mn, and Fe in 35S::AtMGT1 plants increased compared with wild-type plants. Root growth experiment revealed that 100 microM AlCl(3) caused a reduction in root elongation by 47% in transgenic lines, whereas root growth in wild-type plants was inhibited completely. Upon Al treatment, representative transgenic lines also showed a much lower callose deposition, an indicator of increased Al tolerance, than wild-type plants. Taken together, the results have demonstrated that overexpression of ATMGT1 encoding a magnesium transport protein can improve tolerance to Al in higher plants.  相似文献   

11.
Abiotic stresses caused by cadmium (Cd) contamination in soil retard plant growth and decline the quality of food. Amendment of biochar was reported effective in reduction of mobility, plant uptake and toxicity of Cd in plants. The aim of this study was to investigate the effect of biochar applications produced from corn cob and rice husk at three different pyrolysis temperatures (400, 500 and 600 °C) on Cd uptake of tobacco plants. The results showed that the shoot Cd concentration and content of tobacco plants significantly increased with the application of Cd in increasing doses. The results showed that increasing Cd dosescaused significant increase (P < 0.01) in shoot Cd concentration and content of the tobacco plant at three different pyrolysis temperatures of both corn cob and rice husk biochars. The concentration of Cd was 0.48 mg kg?1 in Cd0 dose of corn cob biochar produced at 500 °C and increased to 61.6 mg kg?1 at Cd5, while Cd concentration increased to 72.3 mg kg?1 with rice husk biochar. Despite the increase in Cd concentrations and content, shoot Cd concentrations and contents were significantly (P < 0.01) reduced with the treatments of corn cob and rice husk biochars produced at different pyrolysis temperatures. The Cd concentration at Cd5 dose in the absence of biochar addition was 90.5 mg kg?1, while Cd concentration at Cd5 dose in 400, 500 and 600 °C treatments of corn cob biochar was reduced to 66.5, 61.6 and 67.3 mg kg?1 respectively, and to 77.0, 72.3 and 70.2 mg kg?1 in rice husk biochar. The results also revealed that corn cob biochar treatments were more effective in reducing Cd uptake of tobacco plants compared to rice husk biochar. Higher specific surface area of corncob biochar compared to rice husk biochar caused to the difference between two biochar sources on Cd uptake of tobacco plants.  相似文献   

12.
The effects of zinc on growth, boron uptake, lipid peroxidation, membrane permeability (MP), lypoxygenase (LOX) activity, proline and H2O2 accumulation, and the activities of major antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX)) in bean plants were investigated under greenhouse conditions. Treatments consisted of control, 20 mg/kg B, and 20 mg/kg B plus 20 mg/kg Zn. When the plants were grown with 20 mg/kg Zn, B toxicity was less severe. Zinc supplied to soil counteracted the deleterious effects of B on root and shoot growth. Excess B significantly increased and Zn treatment reduced B concentrations in shoot and root tissues. Applied Zn increased the Zn concentration in the roots and shoots. While the concentrations of H2O2 and proline were increased by B toxicity, their concentrations were decreased by Zn supply. Boron toxicity increased the MP, malondialdehyde content, and LOX activity in excised bean leaves. Applied Zn significantly ameliorated the membrane deterioration. Compared with control plants, the activity of SOD was increased while that of CAT was decreased and APX remained unchanged in B-stressed plants. However, application of Zn decreased the SOD and increased the CAT and APX activities under toxic B conditions. It is concluded that Zn supply alleviates B toxicity by preventing oxidative membrane damage. Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 4, pp. 555–562. This text was submitted by the authors in English.  相似文献   

13.
Boron (B) is an essential micronutrient for plants, which when occurs in excess in the growth medium, becomes toxic to plants. Rapid inhibition of root elongation is one of the most distinct symptoms of B toxicity. Hydrogen sulfide (H2S) is emerging as a potential messenger molecule involved in modulation of physiological processes in plants. In the present study, we investigated the role of H2S in B toxicity in cucumber (Cucumis sativus) seedlings. Root elongation was significantly inhibited by exposure of cucumber seedlings to solutions containing 5 mM B. The inhibitory effect of B on root elongation was substantially alleviated by treatment with H2S donor sodium hydrosulfide (NaHS). There was an increase in the activity of pectin methylesterase (PME) and up-regulated expression of genes encoding PME (CsPME) and expansin (CsExp) on exposure to high B concentration. The increase in PME activity and up-regulation of expression of CsPME and CsExp induced by high B concentration were markedly reduced in the presence of H2S donor. There was a rapid increase in soluble B concentrations in roots on exposure to high concentration B solutions. Treatment with H2S donor led to a transient reduction in soluble B concentration in roots such that no differences in soluble B concentrations in roots in the absence and presence of NaHS were found after 8 h exposure to the high concentration B solutions. These findings suggest that increases in activities of PME and expansin may underlie the inhibition of root elongation by toxic B, and that H2S plays an ameliorative role in protection of plants from B toxicity by counteracting B-induced up-regulation of cell wall-associated proteins of PME and expansins.  相似文献   

14.
铁是植物生长发育的必需元素。由于土壤中的三价铁离子不能被植物直接利用, 使一些植物经常表现出缺铁症状。为探讨利用铁蛋白基因提高植物耐低铁胁迫的作用, 利用农杆菌介导法将大豆铁蛋白基因SoyFer1和内源反义铁蛋白基因NtFer2的cDNA分别导入烟草基因组, 采集转基因烟草种子。对T1转基因烟草的卡那霉素抗性分析表明, 整合到烟草基因组的外源基因多为单拷贝基因, 也有少数为多拷贝基因。对具有卡那霉素抗性的转基因植株进行PCR检测和Northern杂交分析表明, 外源基因已整合到烟草基因组中, 并且得到了正确表达。将转基因株系移栽到铁离子浓度不同的培养基中生长2个月后进行比较表明, 转大豆铁蛋白基因烟草株系的生长量明显高于非转基因烟草株系, 而转内源反义铁蛋白基因烟草株系的生长量则明显低于非转基因烟草株系。转大豆铁蛋白基因和转内源反义铁蛋白基因烟草株系的叶绿素含量、丙二醛(MDA)含量和过氧化物酶(POD)活性等生理性状也发生了明显变化, 表现为转大豆铁蛋白基因株系的叶绿素含量明显增加, POD活性明显增强, MDA含量明显降低; 而转内源反义铁蛋白基因株系的叶绿素含量、POD活性和MDA含量等则表现为与转大豆铁蛋白基因株系的相反。铁蛋白过量表达提高了烟草耐低铁能力, 而铁蛋白抑制表达则降低了烟草耐低铁能力。  相似文献   

15.
16.
Soil fertilization is a common practice in modern agriculture, undertaken to prevent nutrient deficiency in crops. However, fertilization is costly and causes environmental pollution. The cultivation of plants that tolerate low nutrient supplies may circumvent this problem. Here, we report the generation of Arabidopsis thaliana plants that tolerate boron (B)-deficient conditions due to the overexpression of BOR1, an efflux B transporter that is required for efficient xylem loading of B. In several independently generated transgenic plants expressing BOR1 or BOR1-GFP under the control of the cauliflower mosaic virus 35S RNA promoter, root-to-shoot translocation of B was enhanced and shoot growth was greater under B-limiting conditions compared with wild-type plants. In addition, the transgenic plants showed increased translocation of B, especially to the shoot apex, and set seed normally under B-limiting conditions, under which wild-type plants failed to set seed. This study therefore reports plants that show improved seed yields compared with wild-type under nutrient-deficient conditions as a result of increased production of an essential mineral nutrient transporter.  相似文献   

17.
Feng L  Wang K  Li Y  Tan Y  Kong J  Li H  Li Y  Zhu Y 《Plant cell reports》2007,26(9):1635-1646
Activity of the Calvin cycle enzyme sedoheptulose-1,7-bisphosphatase (SBPase) was increased by overexpression of a rice plants 9,311 (Oryza sativa L.) cDNA in rice plants zhonghua11 (Oryza sativa L.). The genetic engineering enabled the plants to accumulate SBPase in chloroplasts and resulted in enhanced tolerance to high temperature stress during growth of young seedlings. Moreover, CO2 assimilation of transgenic plants was significantly more tolerant to high temperature than that of wild-type plants. The analyses of chlorophyll fluorescence and the content and activation of SBPase indicated that the enhancement of photosynthesis to high temperature was not related to the function of photosystem II but to the content and activation of SBPase. Western blotting analyses showed that high temperature stress led to the association of SBPase with the thylakoid membranes from the stroma fractions. However, such an association was much more pronounced in wild-type plants than that in transgenic plants. The results in this study suggested that under high temperature stress, SBPase maintained the activation of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) by preventing the sequestration of Rubisco activase to the thylakoid membranes from the soluble stroma fraction and thus enhanced the tolerance of CO2 assimilation to high temperature stress. The results suggested that overexpression of SBPase might be an effective method for enhancing high temperature tolerance of plants.  相似文献   

18.
Boron (B) is an essential microelement for vascular plant development, but its toxicity is a major problem affecting crop yields in arid and semi‐arid areas of the world. In the literature, several genes involved in abscisic acid (ABA) signalling and responses are upregulated in Arabidopsis roots after treatment with excess B. It is known that the AtNCED3 gene, which encodes a crucial enzyme for ABA biosynthesis, plays a key role in the plant response to drought stress. In this study, root AtNCED3 expression and shoot ABA content were rapidly increased in wild‐type plants upon B‐toxicity treatment. The Arabidopsis ABA‐deficient nced3‐2 mutant had higher transpiration rate, stomatal conductance and accumulated more B in their shoots than wild‐type plants, facts that were associated with the lower levels of ABA in this mutant. However, in wild‐type plants, B toxicity caused a significant reduction in stomatal conductance, resulting in a decreased transpiration rate. This response could be a mechanism to limit the transport of excess B from the roots to the leaves under B toxicity. In agreement with the higher transpiration rate of the nced3‐2 mutant, this genotype showed an increased leaf B concentration and damage upon exposure to 5 mM B. Under B toxicity, ABA application decreased B accumulation in wild‐type and nced3‐2 plants. In summary, this work shows that excess B applied to the roots leads to rapid changes in AtNCED3 expression and gas exchange parameters that would contribute to restrain the B entry into the leaves, this effect being mediated by ABA.  相似文献   

19.
20.
Response of nitrogen metabolism to boron toxicity in tomato plants   总被引:1,自引:0,他引:1  
Boron (B) toxicity has become important in areas close to the Mediterranean Sea where intensive agriculture has been developed. The objective of this research was to study the effects of B toxicity (0.5 m m and 2.0 m m B) on nitrogen (N) assimilation of two tomato cultivars that are often used in these areas. Leaf biomass, relative leaf growth rate (RGRL), concentration of B, nitrate (NO3), ammonium (NH4+), organic N, amino acids and soluble proteins, as well as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthase (GS), glutamate synthetase (GOGAT) and glutamate dehydrogenase (GDH) activities were analysed in leaves. Boron toxicity significantly decreased leaf biomass, RGRL, organic N, soluble proteins, and NR and NiR activities. The lowest NO3 and NH4+ concentration in leaves was recorded when plants were supplied with 2.0 m m B in the root medium. Total B, amino acids, activities of GS, GOGAT and GDH increased under B toxicity. Data from the present study prove that B toxicity causes inhibition of NO3 reduction and increases NH4+ assimilation in tomato plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号