首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Zhou J  Ju W  Wang D  Wu L  Zhu X  Guo Z  He X 《PloS one》2012,7(4):e33577

Background

Inadequate liver regeneration (LR) is still an unsolved problem in major liver resection and small-for-size syndrome post-living donor liver transplantation. A number of microRNAs have been shown to play important roles in cell proliferation. Herein, we investigated the role of miR-26a as a pivotal regulator of hepatocyte proliferation in LR.

Methodology/Principal Findings

Adult male C57BL/6J mice, undergoing 70% partial hepatectomy (PH), were treated with Ad5-anti-miR-26a-LUC or Ad5-miR-26a-LUC or Ad5-LUC vector via portal vein. The animals were subjected to in vivo bioluminescence imaging. Serum and liver samples were collected to test liver function, calculate liver-to-body weight ratio (LBWR), document hepatocyte proliferation (Ki-67 staining), and investigate potential targeted gene expression of miR-26a by quantitative real-time PCR and Western blot. The miR-26a level declined during LR after 70% PH. Down-regulation of miR-26a by anti-miR-26a expression led to enhanced proliferation of hepatocytes, and both LBWR and hepatocyte proliferation (Ki-67+ cells %) showed an increased tendency, while liver damage, indicated by aspartate aminotransferase (AST), alanine aminotransferase (ALT) and total bilirubin (T-Bil), was reduced. Furthermore, CCND2 and CCNE2, as possible targeted genes of miR-26a, were up-regulated. In addition, miR-26a over-expression showed converse results.

Conclusions/Significance

MiR-26a plays crucial role in regulating the proliferative phase of LR, probably by repressing expressions of cell cycle proteins CCND2 and CCNE2. The current study reveals a novel miRNA-mediated regulation pattern during the proliferative phase of LR.  相似文献   

3.
4.

Background

Our previous study found that single-pass membrane protein with coiled-coil domains 1 (C3orf43; XM_006248472.3) was significantly upregulated in the proliferative phase during liver regeneration. This indicates that C3orf43 plays a vital role in liver cell proliferation. However, its physiological functions remains unclear.

Methods

The expressions of C3orf43 in BRL-3A cells transfected with C3orf43-siRNA (C3-siRNA) or overexpressing the vector plasmid pCDH-C3orf43 (pCDH-C3) were measured via RT-qPCR and western blot. Cell growth and proliferation were determined using MTT and flow cytometry. Cell proliferation-related gene expression was measured using RT-qPCR and western blot.

Results

It was found that upregulation of C3orf43 by pCDH-C3 promoted hepatocyte proliferation, and inhibition of C3orf43 by C3-siRNA led to the reduction of cell proliferation. The results of qRT-PCR and western blot assay showed that the C3-siRNA group downregulated the expression of cell proliferation-related genes like JUN, MYC, CCND1 and CCNA2, and the pCDH-C3 group upregulated the expression of those genes.

Conclusion

These findings reveal that C3orf43 may contribute to hepatocyte proliferation and may have the potential to promote liver repair and regeneration.
  相似文献   

5.
The precise role of IL-6 in liver regeneration and hepatocyte proliferation is controversial and the role of SOCS3 in liver regeneration remains unknown. Here we show that in vitro treatment with IL-6 inhibited primary mouse hepatocyte proliferation. IL-6 induced p21cip1 protein expression in primary mouse hepatocytes. Disruption of the p21cip1 gene abolished the inhibitory effect of IL-6 on cell proliferation. Co-culture with nonparenchymal liver cells diminished IL-6 inhibition of hepatocyte proliferation, which was likely due to IL-6 stimulation of nonparenchymal cells to produce HGF. Finally, IL-6 induced higher levels of p21cip1 protein expression and a slightly stronger inhibition of cell proliferation in SOCS3+/- mouse hepatocytes compared to wild-type hepatocytes, while liver regeneration was enhanced and prolonged in SOCS3+/- mice. Our findings suggest that IL-6 directly inhibits hepatocyte proliferation via a p21cip1-dependent mechanism and indirectly enhances hepatocyte proliferation via stimulating nonparenchymal cells to produce HGF. SOCS3 negatively regulates liver regeneration.  相似文献   

6.
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate the translation of messenger RNAs by binding their 3′-untranslated region (3′UTR). In this study, we found that miR-490-3p is significantly down-regulated in A549 lung cancer cells compared with the normal bronchial epithelial cell line. To better characterize the role of miR-490-3p in A549 cells, we performed a gain-of-function analysis by transfecting the A549 cells with chemically synthesized miR-490-3P mimics. Overexpression of miR-490-3P evidently inhibits cell proliferation via G1-phase arrest. We also found that forced expression of miR-490-3P decreased both mRNA and protein levels of CCND1, which plays a key role in G1/S phase transition. In addition, the dual-luciferase reporter assays indicated that miR-490-3P directly targets CCND1 through binding its 3′UTR. These findings indicated miR-490-3P could be a potential suppressor of cellular proliferation.  相似文献   

7.
Long intergenic non-coding RNA 00152 (LINC00152) is aberrantly expressed in various human malignancies and plays an important role in the pathogenesis. Here, we found that LINC00152 is upregulated in hepatocellular carcinoma (HCC) tissues as compared to adjacent non-neoplastic tissues; gain-and-loss-of-function analyses in vitro showed that LINC00152 facilitates HCC cell cycle progression through regulating the expression of CCND1. LINC00152 knockdown inhibits tumorigenesis in vivo. MS2-RIP analysis indicated that LINC00152 binds directly to miR-193a/b-3p, as confirmed by luciferase reporter assays. Furthermore, ectopic expression of LINC00152 partially halted the decrease in CCND1 expression and cell proliferation capacity induced by miR-193a/b-3p overexpression. Thus, LINC00152 acts as a competing endogenous RNA (ceRNA) by sponging miR-193a/b-3p to modulate its target gene, CCND1. Our findings establish a ceRNA mechanism regulating cell proliferation in HCC via the LINC00152/miR-193a/b-3p/CCND1 signalling axis, and identify LINC00152 as a potential therapeutic target for HCC.  相似文献   

8.
To explore the role of the integrin signaling pathway in hepatocytes during rat liver regeneration, the integrin signaling pathway-related gene expression profile in hepatocytes of regenerative liver was detected using Rat Genome 230 2.0 array. The chip data showed that 265 genes of the integrin signaling pathway were included by Rat Genome 230 2.0 array and 132 genes showed significant expression changes in hepatocytes of regenerative liver. The numbers of up-, down- and up/down-regulated genes were 110, 15 and 7 respectively. In addition, bioinformatics and systems biology methods were used to analyze the role of the integrin signaling pathway in hepatocytes. The analysis of gene synergy value indicated that paths 1, 8, 12, and 15 promoted hepatocyte proliferation at the priming phase of liver regeneration; paths 1, 3, 8, and 12–15 enhanced hepatocyte proliferation at the progressing phase; paths 11 and 14 promoted hepatocyte proliferation, while paths 12 and 13 reduced hepatocyte proliferation at the terminal phase. Additionally, the other 8 paths (2, 4, 5–7, 9–10, and 16) were not found to be related to liver regeneration. In conclusion, 132 genes and 8 cascades of the integrin signaling pathway participated in regulating hepatocyte proliferation during rat liver regeneration.  相似文献   

9.
In chronic alcoholism, brain shrinkage and cognitive defects because of neuronal death are well established, although the sequence of molecular events has not been fully explored yet. We explored the role of microRNAs (miRNAs) in ethanol-induced apoptosis of neuronal cells. Ethanol-sensitive miRNAs in SH-SY5Y, a human neuroblastoma cell line, were identified using real-time PCR-based TaqMan low-density arrays. Long-term exposure to ethanol (0.5% v/v for 72 h) produced a maximum increase in expression of miR-497 (474-fold) and miR-302b (322-fold). Similar to SH-SY5Y, long-term exposure to ethanol induced miR-497 and miR-302b in IMR-32, another human neuroblastoma cell line. Using in silico approaches, BCL2 and cyclin D2 (CCND2) were identified as probable target genes of these miRNAs. Cotransfection studies with 3'-UTR of these genes and miRNA mimics have demonstrated that BCL2 is a direct target of miR-497 and that CCND2 is regulated negatively by either miR-302b or miR-497. Overexpression of either miR-497 or miR-302b reduced expression of their identified target genes and increased caspase 3-mediated apoptosis of SH-SY5Y cells. However, overexpression of only miR-497 increased reactive oxygen species formation, disrupted mitochondrial membrane potential, and induced cytochrome c release (mitochondria-related events of apoptosis). Moreover, ethanol induced changes in miRNAs, and their target genes were substantially prevented by pre-exposure to GSK-3B inhibitors. In conclusion, our studies have shown that ethanol-induced neuronal apoptosis follows both the mitochondria-mediated (miR-497- and BCL2-mediated) and non-mitochondria-mediated (miR-302b- and CCND2-mediated) pathway.  相似文献   

10.
MicroRNAs (miRNAs) are noncoding small RNAs that repress protein translation by targeting specific messenger RNAs. miR-15a and miR-16-1 act as putative tumor suppressors by targeting the oncogene BCL2. These miRNAs form a cluster at the chromosomal region 13q14, which is frequently deleted in cancer. Here, we report that the miR-15a and miR-16-1 cluster targets CCND1 (encoding cyclin D1) and WNT3A, which promotes several tumorigenic features such as survival, proliferation and invasion. In cancer cells of advanced prostate tumors, the miR-15a and miR-16 level is significantly decreased, whereas the expression of BCL2, CCND1 and WNT3A is inversely upregulated. Delivery of antagomirs specific for miR-15a and miR-16 to normal mouse prostate results in marked hyperplasia, and knockdown of miR-15a and miR-16 promotes survival, proliferation and invasiveness of untransformed prostate cells, which become tumorigenic in immunodeficient NOD-SCID mice. Conversely, reconstitution of miR-15a and miR-16-1 expression results in growth arrest, apoptosis and marked regression of prostate tumor xenografts. Altogether, we propose that miR-15a and miR-16 act as tumor suppressor genes in prostate cancer through the control of cell survival, proliferation and invasion. These findings have therapeutic implications and may be exploited for future treatment of prostate cancer.  相似文献   

11.
Glioma is the most aggressive malignant tumor in the adult central nervous system. Abnormal long noncoding RNA (lncRNA) FOXD2-AS1 expression was associated with tumor development. However, the possible role of FOXD2-AS1 in the progression of glioma is not known. In the present study, we used in vitro and in vivo assays to investigate the effect of abnormal expression of FOXD2-AS1 on glioma progression and to explore the mechanisms. FOXD2-AS1 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of FOXD2-AS1 was correlated with poor prognosis of glioma. Downregulation of FOXD2-AS1 decreased cell proliferation, migration, invasion, stemness, and epithelial-mesenchymal transition (EMT) in glioma cells and inhibited tumor growth in transplanted tumor. We also revealed that FOXD2-AS1 was mainly located in cytoplasm and microRNA (miR)-185-5p both targeted FOXD2-AS1 and CCND2 messenger RNA (mRNA) 3′-untranslated region (3′-UTR). miR-185-5p was downregulated in glioma tissue, cells, and sphere subpopulation. Downregulation of miR-185-5p was closely correlated with poor prognosis of glioma patients. In addition, miR-185-5p mimics decreased cell proliferation, migration, invasion, stemness, and EMT in glioma cells. CCND2 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of CCND2 was closely correlated with poor prognosis of glioma patients. CCND2 knockdown decreased cell proliferation, migration, invasion, and EMT in glioma cells. In glioma tissues, CCND2 expression was negatively associated with miR-185-5p, but positively correlated with FOXD2-AS1. FOXD2-AS1 knockdown and miR-185-5p mimics decreased CCND2 expression. Inhibition of miR-185-5p suppressed FOXD2-AS1 knockdown-induced decrease of CCND2 expression. Overexpression of CCND2 suppressed FOXD2-AS1 knockdown-induced inhibition of glioma malignancy. Taken together, our findings highlight the FOXD2-AS1/miR-185-5p/CCND2 axis in the glioma development.  相似文献   

12.
13.
14.
MicroRNAs (miRNAs) are involved in controlling hepatocyte proliferation during liver regeneration. In this study, we established the miRNAs-expression patterns of primary hepatocytes in vitro under stimulation of epidermal growth factor (EGF), and found that microRNA-21 (miR-21) was appreciably up-regulated and peaked at 12 h. In addition, we further presented evidences indicating that miR-21 promotes primary hepatocyte proliferation through in vitro transfecting with miR-21 mimics or inhibitor. We further demonstrated that phosphatidylinositol 3′-OH kinase (PI3K)/Akt signaling was altered accordingly, it is, by targeting phosphatase and tensin homologue deleted on chromosome 10, PI3K/Akt signaling is activated by miR-21 to accelerate hepatocyte rapid S-phase entry and proliferation in vitro.  相似文献   

15.
Cancer develops following the accumulation of genetic and epigenetic alterations that inactivate tumor suppressor genes and activate proto-oncogenes. Dysregulated cyclin-dependent kinase (CDK) activity has oncogenic potential in breast cancer due to its ability to inactivate key tumor suppressor networks and drive aberrant proliferation. Accumulation or over-expression of cyclin D1 (CCND1) occurs in a majority of breast cancers and over-expression of CCND1 leads to accumulation of activated CCND1/CDK2 complexes in breast cancer cells. We describe here the role of constitutively active CCND1/CDK2 complexes in human mammary epithelial cell (HMEC) transformation. A genetically-defined, stepwise HMEC transformation model was generated by inhibiting p16 and p53 with shRNA, and expressing exogenous MYC and mutant RAS. By replacing components of this model, we demonstrate that constitutive CCND1/CDK2 activity effectively confers anchorage independent growth by inhibiting p53 or replacing MYC or oncogenic RAS expression. These findings are consistent with several clinical observations of luminal breast cancer sub-types that show elevated CCND1 typically occurs in specimens that retain wild-type p53, do not amplify MYC, and contain no RAS mutations. Taken together, these data suggest that targeted inhibition of constitutive CCND1/CDK2 activity may enhance the effectiveness of current treatments for luminal breast cancer.  相似文献   

16.
17.
18.
Circular RNA (circRNA) is a subclass of noncoding RNA (ncRNA) detected within mammalian tissues and cells. However, its regulatory role during the proliferation phase of rat liver regeneration (LR) remains unreported. This study was designed to explore their regulatory mechanisms in cell proliferation of LR. The circRNA expression profile was detected by high-throughput sequencing. It was indicated that 260 circRNAs were differentially expressed during the proliferation phase of rat LR. Among them, circ-14723 displayed a significantly differential expression. We further explored its regulatory mechanism in rat hepatocytes (BRL-3A cells). First, EdU, flow cytometry and western blot (WB) indicated that knocking down circ-14723 inhibited BRL-3A cells proliferation. Second, RNA-Pulldown and dual-luciferase report assay showed that circ-14723 could sponge rno-miR-16-5p. At last, WB showed that the reported target genes of rno-miR-16-5p, CCND1, and CCNE1 were downregulated after knocking down circ-14723. In conclusion, we found that circ-14723 exerted a critical role in G1/S arrest to promote cell proliferation via rno-miR-16-5p/CCND1 and CCNE1 axis in rat LR. This finding further revealed the regulatory mechanisms of circRNA on cell proliferation of LR, and might provide a potential target for clinical problems.  相似文献   

19.
20.
 肝再生过程中立即早期反应基因的表达在成熟肝细胞由G0 期向G1期的转变中起着关键作用 .为探讨肝再生早期基因表达的变化 ,利用表达性差异显示分析 (RDA)技术研究了 2 3肝部分切除后 1h再生肝选择性基因表达 ,发现一株TEC酪氨酸激酶同源序列存在于差减产物中 ,RNA狭缝杂交证实确为差异表达基因 .从大鼠肝cDNA文库中分离其全长cDNA ,序列分析结果表明 ,该基因为小鼠 人TEC酪氨酸激酶的同源体 ,进而以该cDNA为探针 ,用Northern杂交证实 2 3肝部分切除后TEC酪氨酸激酶基因在 1h内呈现瞬间表达增加 ,其表达水平较基础水平增高 2 5倍 ;在原代培养大鼠肝细胞体系中 ,EGF可迅速诱导TEC基因表达 ,且不被蛋白合成抑制剂阻断 .结果表明 ,TEC基因是一种与肝再生调控密切相关的早期反应基因 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号