首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Cassava is a widely grown staple in Sub-Saharan Africa and consumed as a cheap source of calories, but the crop is deficient in micronutrients including pro-vitamin A carotenoids. This challenge is currently being addressed through biofortification breeding that relies on phenotypic selection. Gene-based markers linked to pro-vitamin A content variation are expected to increase the rate of genetic gain for this critical trait. We sequenced four candidate carotenoid genes from 167 cassava accessions representing the diversity of elite breeder lines from IITA. Total carotenoid content was determined using spectrophotometer and total β-carotene was quantified by high-performance liquid chromatography. Storage root yellowness due to carotenoid pigmentation was assessed. We carried out candidate gene association analysis that accounts for population structure and kinship using genome-wide single nucleotide polymorphisms (SNPs) generated through genotyping-by-sequencing. Significant SNPs were used to design competitive allele-specific PCR assays and validated on the larger population for potential use in marker-assisted selection breeding. Candidate gene sequencing of the genes β-carotene hydroxylase (crtRB), phytoene synthase (PSY2), lycopene epsilon cyclase (lcyE), and lycopene beta cyclase (lcyB) yielded a total of 37 SNPs. Total carotenoid content, total β-carotene, and color parameters were significantly associated with markers in the PSY2 gene. The SNPs from lcyE were significantly associated with color while those of lcyB and crtRB were not significantly associated with carotenoids or color parameters. These validated and breeder-friendly markers have potential to enhance the efficiency of selection for high β-carotene cassava, thus accelerating genetic gain.  相似文献   

2.
Carotenes are plant secondary metabolites that are important for human health. Additionally, carotenes influence fruit color, which is a major trait for breeding. We compared the expression and sequences of genes related to color phenotypes in tomato inbred lines that produce different colors of fleshy fruit. Up-regulation of CYC-B expression and higher amount of β-carotene content in fruit ripening stage and nucleotide variations in the 5′ region of the gene were detected in orange fruited inbred lines compared to the other lines. Our results indicated that there is a close relationship between the expression pattern of the CYC-B gene and the orange color of fleshy fruit. We identified 4 SNPs in the promoter region of CYC-B genes associated with the orange fruit color. Moreover, the segregation ratio and color phenotypes in an F2 generation further indicated that one of the detected SNPs were associated with the orange color in the tested inbred lines. Our study provides valuable information to breeders for marker-assisted selection to produce desirable tomato varieties with health benefits by varying carotenoid levels.  相似文献   

3.
The Pacific oyster Crassostrea gigas has been introduced widely and massively and became an economically important aquaculture species on a global scale. We estimated heritabilities of growth and shell color traits and their genetic correlations in black shell strain of C. gigas. Analyses were performed on 22 full-sib families in a nested mating design including 410 individuals at harvest (24 months of age). The parentage assignment was inferred based on four panels of multiplex PCR markers including 10 microsatellite loci and 94.9% of the offspring were unambiguously assigned to single parent pairs. The Spearman correlation test (r = ? 0.992, P < 0.001) demonstrated the high consistency of the shell pigmentation (SP) and L* and their same efficacy in shell color measurements. The narrow-sense heritability estimated under the animal model analysis was 0.18 ± 0.12 for shell height, 0.25 ± 0.16 for shell length, 0.10 ± 0.09 for shell width, 0.42 ± 0.20 for total weight, 0.32 ± 0.18 for shell weight, and 0.68 ± 0.16 for L*, 0.69 ± 0.16 for shell pigmentation, respectively. The considerable additive genetic variation in growth and shell color traits will make it feasible to produce genetic improvements for these traits in selective breeding program. High genetic and phenotypic correlations were found among growth traits and among shell color traits. To optimize a selection strategy for both fast growth and pure dark shell strain of C. gigas, it is proposed to take both total weight and black shell as joint objective traits in selective breeding program. Our study offers an important reference in the process of selective breeding in black shell color stain of C. gigas and will facilitate to develop favorable breeding strategies of genetic improvements for this economically important strain.  相似文献   

4.
Candidate gene association studies implicate the detection of contributing single nucleotide polymorphism (SNP) for the target traits and have been recommended as a promising technique to anatomize the complex characters in plants. The ERECTA gene in plants controls different physiological functions. In this study, we identified SNPs in 1.1 kb partial sequences of TaER-1 and TaER-2 of wheat (Triticum aestivum L.). Thirty-nine SNPs were identified in the coding regions of TaER-1 gene in 33 wheat genotypes, of which 20 SNPs caused non-synonymous mutations while 19 SNPs produced synonymous mutations; 31 SNPs were located in the coding regions of TaER-2 gene in 26 genotypes, of which 18 SNPs caused non-synonymous mutations and 13 SNPs caused synonymous mutations. In addition, 32 SNPs in TaER-1 and 9 SNPs in TaER-2 were also identified in the non-coding regions. Moreover, the significant genetic associations of SNPs of TaER-1 and TaER-2 genes with carbon isotope discrimination, stomatal conductance, photosynthetic rate, transpiration rate, intrinsic water use efficiency (iWUE), leaf length, leaf width, stomatal density, epidermal cell density, and stomatal index were noted in wheat genotypes. This study confirms the importance of TaER-1 and TaER-2 genes which could improve iWUE of wheat by regulating leaf gas exchange and leaf structural traits. These identified SNPs may play a critical role in molecular breeding by means of marker-assisted selection.  相似文献   

5.
Seedlessness, flavor, and color are top priorities for mandarin (Citrus reticulata Blanco) cultivar improvement. Given long juvenility, large tree size, and high breeding cost, marker-assisted selection (MAS) may be an expeditious and economical approach to these challenges. The objectives of this study were to construct high-density mandarin genetic maps and to identify single nucleotide polymorphism (SNP) markers associated with fruit quality traits. Two parental genetic maps were constructed from an F1 population derived from ‘Fortune’ × ‘Murcott’, two mandarin cultivars with distinct fruit characters, using a 1536-SNP Illumina GoldenGate assay. The map for ‘Fortune’ (FOR) consisted of 189 SNPs spanning 681.07 cM and for ‘Murcott’ (MUR) consisted of 106 SNPs spanning 395.25 cM. Alignment of the SNP sequences to the Clementine (Citrus clementina) genome showed highly conserved synteny between the genetic maps and the genome. A total of 48 fruit quality quantitative trait loci (QTLs) were identified, and ten of them stable over two or more samplings were considered as major QTLs. A cluster of QTLs for flavedo color space values L, a, b, and a/b and juice color space values a and a/b were detected in a single genomic region on linkage group 4. Two carotenoid biosynthetic pathway genes, pds1 and ccd4, were found within this QTL interval. Several SNPs were potentially useful in MAS for these fruit characteristics. QTLs were validated in 13 citrus selections, which may be useful in further validation and tentative MAS in mandarin fruit quality improvement.  相似文献   

6.
Change of carotenoid composition in crabs during embryogenesis   总被引:1,自引:0,他引:1  
Changes of the qualitative and quantitative compositions of carotenoids are studied at various development stages of the external hard roe, determined based on color differences, for the species C. opilio, P. camtschaticus, and P. platypus. It has been revealed that the major carotenoids of the new egg are astaxanthin and β-carotene. Intermediate products of transformation of β-carotene into astaxanthin are identified: echinenone, canthaxanthine, and phenicoxanthine. The carotenoid content per embryo for the new hard roe of C. opilio (the orange egg) amounted to 22.7 ng, of P. camtschaticus and P. platypus (the violet egg)—to 49.2 and 23.3 ng, respectively. In the hard roe at the later development stage (the brown egg) the carotenoid content was decreased to 13.1 ng in C. opilio and to 20.1 ng in P. camtschaticus. Development of embryos is accompanied by accumulation of esterified carotenoids and a decrease of β-carotene and astaxanthine concentrations in all studied species.  相似文献   

7.
8.
The larval morphology of the gastropod Cryptonatica janthostoma inhabiting the Northwest Pacific was described for the first time. Hatched planktotrophic veligers of C. janthostoma had shells 250 μm in height with 0.8 whorls, a bilobate velum with a dark brown pigmentation band shaped along its edge, pair of eye spots, tentacles and statocysts. The surface of the embryonal shell (protoconch 1) was covered with fine granules extended at the dorsal side and rounded at lateral surfaces. Concentric crests and growth lines occurred on part of the shell of late free-swimming larvae (protoconch 2) The velum of the C. janthostoma larvae remained bilobate during the pelagic stage of development, whereas it was divided in 4 lobes during larval development in most of the other species of the Naticidae family. The veliger of C. janthostoma was similar to that of Natica montagu from Danish waters [16] by its shape, pigmentation, shell sculpture and velum structure.  相似文献   

9.

Key message

QTLs and candidate gene markers associated with leaf morphological and color traits were identified in two immortalized populations of Brassica rapa, which will provide genetic information for marker-assisted breeding.

Abstract

Brassica rapa is an important leafy vegetable consumed worldwide and morphology is a key character for its breeding. To enhance genetic control, quantitative trait loci (QTLs) for leaf color and plant architecture were identified using two immortalized populations with replications of 2 and 4 years. Overall, 158 and 80 QTLs associated with 23 and 14 traits were detected in the DH and RIL populations, respectively. Among them, 23 common robust-QTLs belonging to 12 traits were detected in common loci over the replications. Through comparative analysis, five crucifer genetic blocks corresponding to morphology trait (R, J&U, F and E) and color trait (F, E) were identified in three major linkage groups (A2, A3 and A7). These might be key conserved genomic regions involved with the respective traits. Through synteny analysis with Arabidopsis, 64 candidate genes involved in chlorophyll biosynthesis, cell proliferation and elongation were co-localized within QTL intervals. Among them, SCO3, ABI3, FLU, HCF153, HEMB1, CAB3 were mapped within QTLs for leaf color; and CYCD3;1, CYCB2;4, AN3, ULT1 and ANT were co-localized in QTL regions for leaf size. These robust QTLs and their candidate genes provide useful information for further research into leaf architecture with crop breeding.
  相似文献   

10.
The current status of the Yesso scallop, Mizuhopecten yessoensis, population has been studied in waters of the southern part of the Far Eastern Marine Reserve. The maximum population densities of this species observed in Kalevala Bay in 2007 and 2015 were 0.50 and 0.56 ind./m2, respectively. In the bays and off the semi-open shores, the mean population density was higher than in open waters. The number of Yesso scallops in the studied part of the reserve (1.3 million ind.) is equivalent to that in 2007 (1.2 million ind.); the difference between the population density values in 2007 and 2015 is statistically insignificant at the 5% level of significance. The total number of M. yessoensis in Peter the Great Bay is estimated at 4 million ind.; at least one-quarter of the population inhabits the southern part of the reserve.  相似文献   

11.
One of the applications of genomics is to identify genetic markers linked to loci responsible for variation in phenotypic traits, which could be used in breeding programs to select individuals with favorable alleles, particularly at the seedling stage. With this aim, in the framework of the European project FruitBreedomics, we selected five main peach fruit characters and a resistance trait, controlled by major genes with Mendelian inheritance: fruit flesh color Y, fruit skin pubescence G, fruit shape S, sub-acid fruit D, stone adhesion-flesh texture F-M, and resistance to green peach aphid Rm2. They were all previously mapped in Prunus. We then selected three F1 and three F2 progenies segregating for these characters and developed genetic maps of the linkage groups including the major genes, using the single nucleotide polymorphism (SNP) genome-wide scans obtained with the International Peach SNP Consortium (IPSC) 9K SNP array v1. We identified SNPs co-segregating with the characters in all cases. Their positions were in agreement with the known positions of the major genes. The number of SNPs linked to each of these, as well as the size of the physical regions encompassing them, varied depending on the maps. As a result, the number of useful SNPs for marker-assisted selection varied accordingly. As a whole, this study establishes a sound basis for further development of MAS on these characters. Additionally, we also discussed some limitations that were observed regarding the SNP array efficiency.  相似文献   

12.
The fibronectin type III and SPRY domain containing 2 (FSD2) on porcine chromosome 7 is considered a candidate gene for pork quality, since its two domains, which were present in fibronectin and ryanodine receptor. The fibronectin type III and SPRY domains were first identified in fibronectin and ryanodine receptor, respectively, which are candidate genes for meat quality. The aim of this study was to elucidate the genomic structure of FSD2 and functions of single nucleotide polymorphisms (SNPs) within FSD2 that are related to meat quality in pigs. Using a bacterial artificial chromosome clone sequence, we revealed that porcine FSD2 consisted of 13 exons encoding 750 amino acids. In addition, FSD2 was expressed in heart, longissimus dorsi muscle, psoas muscle, and tendon among 23 kinds of porcine tissues tested. A total of ten SNPs, including four missense mutations, were identified in the exonic region of FSD2, and two major haplotypes were obtained based on the SNP genotypes of 633 Berkshire pigs. Both haplotypes were associated significantly with intramuscular fat content (IMF, P < 0.020) and moisture percentage (MP, P < 0.002). Moreover, haplotype 2 was associated with meat color, affecting yellowness (P = 0.002). These haplotype effects were further supported by the alteration of putative protein structures with amino acid substitutions. Taken together, our results suggest that FSD2 haplotypes are involved in regulating meat quality including IMF, MP, and meat color in pigs, and may be used as meaningful molecular makers to identify pigs with preferable pork quality.  相似文献   

13.
14.
Glutelin is the most significant seed storage protein and is regarded as an important nutrient quality trait in rice. Research on the genetic basis of the glutelin content distinction in rice will provide more choices for the diets of people with kidney disease and diabetes. The GluA and GluB1 genes play important roles in the process of glutelin synthesis. In this study, 128 Japonica rice accessions with wide geographic distributions were collected to construct the association panel. Among all the 128 accessions, both sequences of the GluA and GluB1 genes were obtained, and nucleotide polymorphisms were detected. A total of 46 SNPs and eight InDels, six SNPs and four InDels were found in the GluA and GluB1 gene sequences, respectively. Eight haplotypes and two haplotypes were classified based on the SNPs in the coding region of the GluA and GluB1 genes, respectively. Moreover, the association of the polymorphic sites in the two genes with glutelin content in the tested population was estimated. The results revealed that five SNPs in the GluA gene, one SNP and one InDel in the GluB1 gene were associated with glutelin content at a significant level (P < 0.01). Corresponding markers were also designed to check the alleles of GluA and GluB1 genes. These results suggested that polymorphisms in the GluA and GluB1 genes in rice could be utilized in molecular marker-assisted selection to improve the nutrient quality of rice breeding programmes.  相似文献   

15.

Background

The shells of various Haliotis species have served as models of invertebrate biomineralization and physical shell properties for more than 20 years. A focus of this research has been the nacreous inner layer of the shell with its conspicuous arrangement of aragonite platelets, resembling in cross-section a brick-and-mortar wall. In comparison, the outer, less stable, calcitic prismatic layer has received much less attention. One of the first molluscan shell proteins to be characterized at the molecular level was Lustrin A, a component of the nacreous organic matrix of Haliotis rufescens. This was soon followed by the C-type lectin perlucin and the growth factor-binding perlustrin, both isolated from H. laevigata nacre, and the crystal growth-modulating AP7 and AP24, isolated from H. rufescens nacre. Mass spectrometry-based proteomics was subsequently applied to to Haliotis biomineralization research with the analysis of the H. asinina shell matrix and yielded 14 different shell-associated proteins. That study was the most comprehensive for a Haliotis species to date.

Methods

The shell proteomes of nacre and prismatic layer of the marine gastropod Haliotis laevigata were analyzed combining mass spectrometry-based proteomics and next generation sequencing.

Results

We identified 297 proteins from the nacreous shell layer and 350 proteins from the prismatic shell layer from the green lip abalone H. laevigata. Considering the overlap between the two sets we identified a total of 448 proteins. Fifty-one nacre proteins and 43 prismatic layer proteins were defined as major proteins based on their abundance at more than 0.2% of the total. The remaining proteins occurred at low abundance and may not play any significant role in shell fabrication. The overlap of major proteins between the two shell layers was 17, amounting to a total of 77 major proteins.

Conclusions

The H. laevigata shell proteome shares moderate sequence similarity at the protein level with other gastropod, bivalve and more distantly related invertebrate biomineralising proteomes. Features conserved in H. laevigata and other molluscan shell proteomes include short repetitive sequences of low complexity predicted to lack intrinsic three-dimensional structure, and domains such as tyrosinase, chitin-binding, and carbonic anhydrase. This catalogue of H. laevigata shell proteins represents the most comprehensive for a haliotid and should support future efforts to elucidate the molecular mechanisms of shell assembly.
  相似文献   

16.
Soybean mosaic virus (SMV) causes a substantial decrease in soybean yield and reduction of seed quality. The most effective management strategy to control the virus is the deployment of host resistance. Seven SMV strains and three independent multi-allelic loci for SMV resistance have been identified previously. The goal of this research was to detect single nucleotide polymorphisms (SNPs) associated with SMV resistance at the Rsv4 locus. Ten soybean accessions, with confirmed resistance genes, were used for sequencing the candidate gene Glyma.02g121400. Alignment of these sequences revealed three SNPs displaying 100% consistency for genotypes carrying the Rsv4 gene. These SNPs were applied for a rapid screen of diverse soybean germplasm using the Sequenom iPLEX Gold platform, phenotyped with SMV-G1 and G7 strains to determine phenotype and classified into several groups carrying the proposed R-gene. The population of V94-5152 (Rsv4) × Lee 68 (rsv) was screened using novel SNPs to create a genetic map with improved resolution to determine the location of the Rsv4. To observe the recombination frequencies within the population, three additional SNPs on both sides of the Glyma.02g121400 gene were added. A linkage map revealed a distance of 3.6 cM between the Rsv4 locus and the closest SNP, thus shifting the putative Rsv4 region downstream on chromosome 2. With this region, five candidate genes have been proposed. The genomic position of the discovered SNPs, linked to the Rsv4, could increase screening precision and accelerate breeding efforts to develop multi-strain-resistant crops.  相似文献   

17.
NOTCH1 is one of the four mammalian Notch receptors, which is involved in the Notch signaling pathway. Specifically, NOTCH1 promotes the proliferation of myogenic precursor cells, and the NICD domain of NOTCH1 can impair regeneration of skeletal muscles. However, similar research on the bovine NOTCH1 gene is lacking. In this study, we detected the polymorphisms of the bovine NOTCH1 gene in a total of 448 individuals from Chinese Qinchuan cattle with DNA pooling, forced PCR-RFLP, and DNA sequencing methods. Five novel SNPs were identified within the NICD domain, and eight haplotypes comprising combinations of these five SNPs were studied as well. The association analysis of SNPs’ effects with growth traits revealed that g.A48250G was significantly associated with body height, body weight, and height at hip cross, and that g.A49239C only showed significant associations with body height. This suggests that the NOTCH1 gene is a strong candidate gene that could be utilized as a promising marker in beef cattle breeding programs.  相似文献   

18.
The one of the key pigment genes, the melanocortin 1 receptor (MC1R) gene, plays a fundamental role in the determination of coat color in a variety of mammals. However, so far there has been no report regarding the genetic variants of the MC1R promoter region and the potential association of its mutations with coat color in foxes. This work aimed to characterize 5'-flanking region of the MC1R gene and its mutations associated with coat color variations in foxes. A total of 76 individuals including 64 red foxes (Vulpes vulpes), representing 11 color morphs, and 12 arctic foxes (Vulpes lagopus), representing 2 color morphs were studied. To explore the potential cause of coat color variation in foxes, an 1105 bp region located upstream of the MC1R gene coding region was sequenced in 76 foxes. In the present study, a 1267 bp 5'-flanking region of fox MC1R gene was obtained using a PCR-mediated chromosome-walking technique and a 1105 bp segment was sequenced. A total of 8 novel SNPs and an insertion/deletion of 4 nucleotides were detected. The results of mutations analysis indicated that SNPs g.-52G>A, g.-266A>G, g.-297T>C, g.-300G>A and the insertion/deletion spaning positions g.-382~-379 were important in distinguishing V. vulpes and V. lagopus. This work, for the first time, described and confirmed the different variants existed in the 5'-flanking region of MC1R gene between red foxes and arctic foxes. These findings may be extremely helpful for further exploring the alternative splicings or promoter activity of MC1R gene for different coat-colored foxes.  相似文献   

19.
Modern plant breeding heavily relies on the use of molecular markers. In recent years, next generation sequencing (NGS) emerged as a powerful technology to discover DNA sequence polymorphisms and generate molecular markers very rapidly and cost effectively, accelerating the plant breeding programmes. A single dominant locus, Frl, in tomato provides resistance to the fungal pathogen Fusarium oxysporum f. sp. radicis-lycopersici (FORL), causative agent of Fusarium crown and root rot. In this study, we describe the generation of molecular markers associated with the Frl locus. An F2 mapping population between an FORL resistant and a susceptible cultivar was generated. NGS technology was then used to sequence the genomes of a susceptible and a resistant parent as well the genomes of bulked resistant and susceptible F2 lines. We zoomed into the Frl locus and mapped the locus to a 900 kb interval on chromosome 9. Polymorphic single-nucleotide polymorphisms (SNPs) within the interval were identified and markers co-segregating with the resistant phenotype were generated. Some of these markers were tested successfully with commercial tomato varieties indicating that they can be used for marker-assisted selection in large-scale breeding programmes.  相似文献   

20.
Hull color (HC) in foxtail millet appears to be a major indicator of nutritional quality. To attempt to identify and characterize the gene or quantitative trait locus (QTL) related to HC and to provide a basis for quality and yield breeding of foxtail millet, a restriction site-associated DNA sequencing (RAD-seq) analysis was employed to reveal genome-wide single nucleotide polymorphisms (SNPs) and to genotype the F2 progeny from a cross between two cultivars: Heizhigu with green HC and Changnong 35 with yellow HC. A high-density linkage map spanning 1542.87 cM was constructed using 1694 bin markers, consisting of 46,256 SNP markers, and a QTL locus controlling HC was identified and temporarily named as Sihc1 (Setaria italica hull color). Results showed that Sihc1 was located in the interval between markers M33926512 and M34281352 on the end of chromosome 6, and explained 80.26% of the phenotypic variation with a logarithm of odds ratio of 93.46. The additive and dominant effects of Sihc1 were 1.0025 and ?0.9991, respectively. Sihc1 was narrowed to a 354.84 kb physical region, inclusive of 30 open reading frames, and further analysis suggested that Seita.6G226500, Seita.6G226800, Seita.6G228300, and Seita.6G228600 might be the key candidates of Sihc1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号