首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Summary Hybridization experiments indicated that the maize genome contains a family of sequences closely related to the Ds1 element originally characterized from theAdh1-Fm335 allele of maize. Examples of these Ds1-related segments were cloned and sequenced. They also had the structural properties of mobile genetic elements, i.e., similar length and internal sequence homology with Ds1, 10- or 11-bp terminal inverted repeats, and characteristic duplications of flanking genomic DNA. All sequences with 11-bp terminal inverted repeats were flanked by 8-bp duplications, but the duplication flanking one sequence with 10-bp inverted repeats was only 6 bp. Similar Ds1-related sequences were cloned fromTripsacum dactyloides. They showed no more divergence from the maize sequences than the individual maize sequences showed when compared with each other. No consensus sequence was evident for the sites at which these sequences had inserted in genomic DNA.  相似文献   

2.
Hsu FC  Wang CJ  Chen CM  Hu HY  Chen CC 《Genetics》2003,164(3):1087-1097
Two families of tandem repeats, 180-bp and TR-1, have been found in the knobs of maize. In this study, we isolated 59 clones belonging to the TR-1 family from maize and teosinte. Southern hybridization and sequence analysis revealed that members of this family are composed of three basic sequences, A (67 bp); B (184 bp) or its variants B' (184 bp), 2/3B (115 bp), 2/3B' (115 bp); and C (108 bp), which are arranged in various combinations to produce repeat units that are multiples of approximately 180 bp. The molecular structure of TR-1 elements suggests that: (1) the B component may evolve from the 180-bp knob repeat as a result of mutations during evolution; (2) B' may originate from B through lateral amplification accompanied by base-pair changes; (3) C plus A may be a single sequence that is added to B and B', probably via nonhomologous recombination; and (4) 69 bp at the 3' end of B or B', and the entire sequence of C can be removed from the elements by an unknown mechanism. Sequence comparisons showed partial homologies between TR-1 elements and two centromeric sequences (B repeats) of the supernumerary B chromosome. This result, together with the finding of other investigators that the B repeat is also fragmentarily homologous to the 180-bp repeat, suggests that the B repeat is derived from knob repeats in A chromosomes, which subsequently become structurally modified. Fluorescence in situ hybridization localized the B repeat to the B centromere and the 180-bp and TR-1 repeats to the proximal heterochromatin knob on the B chromosome.  相似文献   

3.
This report aims to describe the identification and molecular characterization of a 145-bp tandem repeat family that accounts for nearly 1.5% of the Populus genome. Three members of this repeat family were cloned and sequenced from Populus deltoides and P. ciliata. The dimers of the repeat were sequenced in order to confirm the head-to-tail organization of the repeat. Hybridization-based analysis using the 145-bp tandem repeat as a probe on genomic DNA gave rise to ladder patterns which were identified to be a result of methylation and (or) sequence heterogeneity. Analysis of the methylation pattern of the repeat family using methylation-sensitive isoschizomers revealed variable methylation of the C residues and lack of methylation of the A residues. Sequence comparisons between the monomers revealed a high degree of sequence divergence that ranged between 6% and 11% in P. deltoides and between 4.2% and 8.3% in P. ciliata. This indicated the presence of sub-families within the 145-bp tandem family of repeats. Divergence was mainly due to the accumulation of point mutations and was concentrated in the central region of the repeat. The 145-bp tandem repeat family did not show significant homology to known tandem repeats from plants. A short stretch of 36 bp was found to show homology of 66.7% to a centromeric repeat from Chironomus plumosus. Dot-blot analysis and Southern hybridization data revealed the presence of the repeat family in 13 of the 14 Populus species examined. The absence of the 145-bp repeat from P. euphratica suggested that this species is relatively distant from other members of the genus, which correlates with taxonomic classifications. The widespread occurrence of the tandem family in the genus indicated that this family may be of ancient origin.  相似文献   

4.
Base sequence studies of 300 nucleotide renatured repeated human DNA clones   总被引:117,自引:0,他引:117  
A band of 300 nucleotide long duplex DNA is released by treating renatured repeated human DNA with the single strand-specific endonuclease S1. Since many of the interspersed repeated sequences in human DNA are 300 nucleotides long, this band should be enriched in such repeats. We have determined the nucleotide sequences of 15 clones constructed from these 300 nucleotide S1-resistant repeats. Ten of these cloned sequences are members of the Alu family of interspersed repeats. These ten sequences share a recognizable consensus sequence from which individual clones have an average divergence of 12.8%. The 300 nucleotide Alu family consensus sequence has a dimeric structure and was evidently formed from a head to tail duplication of an ancestral monomeric sequence. Three of the remaining clones are variations on a simple pentanucleotide sequence previously reported for human satellite III DNA. Two of the 15 clones have distinct and complex sequences and may represent other families of interspersed repeated sequences.  相似文献   

5.
The dipteran Chironomus tentans has complex tandemly repeated 350-bp DNA sequences at or near the chromosome ends. As in Drosophila melanogaster, short simple repeats with cytosines and guanines in different strands have never been observed. We were therefore interested in learning whether the Chironomus repeats could have evolved from simple sequence telomeric DNA, which might suggest that they constitute a functional equivalent. We screened for repeat units with evolutionarily ancient features within the tandem arrays and recovered two clones with a less-evolved structure. Sequence analysis reveals that the present-day 350-bp unit probably evolved from a simpler 165-bp unit through the acquisition of transposed sequences. The 165-bp unit contains DNA with a highly biased distribution of cytosine and guanine between the two strands, although with the ratios inverted in two minor parts of the repeat. It is largely built up of short degenerate subrepeats for which most of the sequence can be reconstructed. The consensus for the subrepeat sequence is similar to the simple telomeric repeat sequences of several kinds of eukaryotes. We propose that the present-day unit has evolved from telomeric, simple sequence, asymmetric DNA from which it has retained some original sequence features and possibly functions.  相似文献   

6.
We have investigated the organisation, nucleotide sequence, and chromosomal distribution of a tandemly repeated, satellite DNA from Allium cepa (Liliaceae). The satellite, which constitutes about 4% of the A. cepa genome, may be resolved from main-band DNA in antibiotic-CsCl density gradients, and has a repeat length of about 375 base pairs (bp). A cloned member of the repeat family hybridises exclusively to chromosome telomeres and has a non-random distribution in interphase nuclei. We present the nucleotide sequences of three repeats, which differ at a large number of positions. In addition to arrays made up of 375-bp repeats, homologous sequences are found in units with a greater repeat length. This divergence between repeats reflects the heterogeneity of the satellite determined using other criteria. Possible constraints on the interchromosomal exchange of repeated sequences are discussed.  相似文献   

7.
A computer-aided homology search of databases found that the nucleotide sequences flanking ATLN44, a non-LTR retrotransposon (LINE) from Arabidopsis thaliana, are repeated in the A. thaliana genome. These sequences are homologous to flanking sequences of 664 bp with terminal inverted repeat sequences of about 70 bp. The 664-bp sequence and most of the 14 homologues identified were flanked by direct repeat sequences of 9 bp. These findings indicate that the repeated sequence, named Tnat1, is a transposable element that duplicates a 9-bp sequence at the target site on transposition and that ATLN44 is inserted in one Tnat1 member. Interestingly, all of the Tnat1 members had tandem repeats comprised of several units of a 60-bp sequence, the number of repeats differing among Tnat1 members. Of the Tnat1 members identified, one was inserted into another sequence repeated in the A. thaliana genome: that sequence is about 770 bp long and has terminal inverted repeat sequences of about 110 bp. The sequence is flanked by direct repeats of a 9-bp sequence, indicating that it is another transposable element, named Tnat2, from A. thaliana. Moreover, Tnat2 members had a tandem repeat about 240 bp long. Tnat1 and Tnat2 with tandem repeats in their internal regions show no homology to each other or to any of the elements identified previously; therefore they appear to be novel transposable elements.  相似文献   

8.
9.
10.
Sequence analysis of bovine satellite I DNA (1.715 gm/cm3).   总被引:4,自引:1,他引:3       下载免费PDF全文
The 1402 bp Eco RI repeating unit of bovine satellite I DNA (rho CsCl = 1.715 gm/cm3) has been cloned in pBR322. The sequence of this cloned repeat has been determined and is greater than 97% homologous to the sequence reported for another clone of satellite I (48) and for uncloned satellite I DNA (49). The internal sequence structure of the Eco RI repeat contains imperfect direct and inverted repeats of a variety of lengths and frequencies. The most outstanding repeat structures center on the hexanucleotide CTCGAG which, at a stringency of greater than 80% sequence homology, occurs at 26 locations within the RI repeat. Two of these 6 bp units are found within the 31 bp consensus sequence of a repeating structure which spans the entire length of the 1402 bp repeat (49). The 31 bp consensus sequence contains an internal dodecanucleotide repeat, as do the consensus sequences of the repeat units determined for 3 other bovine satellite DNAs (rho CsCl = 1.706, 1.711a, 1.720 gm/cm3). Based on this evidence, we present a model for the evolutionary relationship between satellite I and the other bovine satellites.  相似文献   

11.
E. J. Louis  J. E. Haber 《Genetics》1992,131(3):559-574
The subtelomeric Y' family of repeated DNA sequences in the yeast Saccharomyces cerevisiae is of unknown origin and function. Y's vary in copy number and location among strains. Eight Y's, from two strains, were cloned and sequenced over the same 3.2-kb interval in order to assess the within- and between-strain variation as well as address their origin and function. One entire Y' sequence was reconstructed from two clones presented here and a previously sequenced 833-bp region. It contains two large overlapping open reading frames (ORFs). The putative protein sequences have no strong homologies to any known proteins except for one region that has 27% identity with RNA helicases. RNA homologous to each ORF was detected. Comparison of the sequences revealed that the known long (Y'-L) and short (Y'-S) size classes, which coexist within cells, differ by several insertions and/or deletions within this region. The Y'-Ls from strain Y55 also differ from those of strain YP1 by several short deletions in the same region. Most of these deletions appear to have occurred between short (2-10 bp) direct repeats. The single base pair polymorphisms and the deletions are clustered in the first half of the interval compared. There is 0.30-1.13% divergence among Y'-Ls within a strain and 1.15-1.75% divergence between strains in the interval. This is similar to known unique sequence variation but contrasts with the 8-18% divergence among the adjacent subtelomeric repeats, X. Subsets of Y's exhibit concerted evolution; however, more than one variant appears to be maintained within strains. The observed sequence variation disrupts the first ORF in many Y's while most of the second ORF including the putative helicase region is unaffected. The structure and distribution of the Y' elements are consistent with having originated as a mobile element. However, they now appear to move via recombination. Recombination can account for the homogenization within subsets of Y's but does not account for the maintenance of different variants.  相似文献   

12.
Alternating purine-pyrimidine sequences (RY repeats) demonstrate considerable homology to the consensus sequence for vertebrate topoisomerase II (Spitzner and Muller (1988) Nucleic Acids Res. 16: 1533-1556). This is shown below and positions that can match are underscored. RYRYRYRYRYRYRYRYRY = alternating purine-pyrimidine 18 bp RNYNNCNNGYNGKTNYNY = topoisomerase II consensus sequence (R is purine, Y is pyrimidine, K is G or T.) Topoisomerase II cleavage reactions were performed (in the absence of inhibitors) on a plasmid containing a 54 base RY repeat and the single strong cleavage site mapped to the RY repeat. Analysis of this DNA on sequencing gels showed that the enzyme cleaved a number of sites, all within the 54 base pair RY repeat. Topoisomerase II also made clustered cleavages within other RY repeats that were examined. Quantitative analysis of homology to the consensus sequence, as measured by the match of a site to a matrix of base proportions from the consensus data base (the matrix mean), showed that both the locations and the frequencies of cleavage sites within RY repeats were proportional to homology scores. However, topoisomerase II cleaved RY repeats preferentially in comparison to non-RY sites with similar homology scores. The activity of the enzyme at RY repeats appears to be proportional to the length of the repeat; additionally, GT, AC and AT repeats were better substrates for cleavage than GC repeats.  相似文献   

13.
The mouse genomic locus containing the oncogene c-mos was analyzed for repetitive DNA sequences. We found a single B1 repeat 10 kb upstream and three B1 repeats 0.6 kb, 2.7 kb, and 5.4 kb, respectively, downstream from c-mos. The B1 repeat closest to c-mos contains an internal 7-bp duplication and a 18-bp insertion. Localized between the last two B1 repeats is a copy of a novel mouse repeat. Sequence comparison of three copies of this novel repeat family shows that they a) contain a conserved BglII site, b) are approximately 420 bp long, c) possess internal 50-bp polypurine tracts, and d) have structural characteristics of transposable elements. They are present in about 1500 copies per haploid genome in the mouse, but are not detectable in DNA of other mammals. The BglII repeat downstream from c-mos is interrupted by a single 632-bp LTR element. We estimate that approximately 1200 copies of this element are present per haploid genome in BALB/c mice. It shares sequence homology in the R-U5 region with an LTR element found in 129/J mice.  相似文献   

14.
E Ullu  S Murphy  M Melli 《Cell》1982,29(1):195-202
We have cloned and sequenced a cDNA copy of in vitro-polyadenylated 7SL RNA of HeLa cells. The cloned fragment is 303 bp long and has a composite structure. A central block of 140 bp is homologous to a new set of human middle-repetitive sequences. This block appears to be inserted in an Alu consensus sequence, 100 bp from the 5' end and 40 bp from the 3' end of the Alu monomer. Two 6 bp direct repeats are found at the junction between the Alu flanking sequences and the central element. The analysis of several clones shows the existence of sequence microheterogeneity in the 5' portion of the molecule. The 7L DNA probably represents a subset of the Alu family of DNA, highly conserved in evolution.  相似文献   

15.
A new family of centromeric highly repetitive DNA sequences was isolated from EcoRI-digested genomic DNA of the blue-breasted quail (Coturnix chinensis, Galliformes), and characterized by filter hybridization and chromosome in situ hybridization. The repeated elements were divided into two types by nucleotide length and chromosomal distribution; the 578-bp element predominantly localized to microchromosomes and the 1,524-bp element localized to chromosomes 1 and 2. The 578-bp element represented tandem arrays and did not hybridize to genomic DNAs of other Galliformes species, chicken (Gallus gallus), Japanese quail (Coturnix japonica) and guinea fowl (Numida meleagris). On the other hand, the 1,524-bp element was not organized in tandem arrays, and did hybridize to the genomic DNAs of three other Galliformes species, suggesting that the 1,524-bp element is highly conserved in the Galliformes. The 578-bp element was composed of basic 20-bp internal repeats, and the consensus nucleotide sequence of the internal repeats had homologies to the 41-42 bp CNM repeat and the XHOI family repeat of chicken. Our data suggest that the microchromosome-specific highly repetitive sequences of the blue-breasted quail and chicken were derived from a common ancestral sequence, and that they are one of the major and essential components of chromosomal heterochromatin in Galliformes species.  相似文献   

16.
The human erythrocyte alpha-spectrin gene which spans 80 kbp has been cloned from human genomic DNA as overlapping lambda recombinants. The exon-intron junctions were identified and the exons mapped. The gene is encoded by 52 exons whose sizes range from 684 bp to the smallest of 18 bp. The donor and acceptor splice site sequences match the splice site consensus sequences, with the exception of one splice site where a donor sequence begins with -GC. The size and location of exons do not correlate with the 106-amino-acid repeat, except in three locations where the surrounding codons are conserved as well. The lack of correspondence between exons and 106-amino-acid repeat is interpreted to reflect the appearance of a spectrin-like gene from a minigene early in the evolution of eukaryotes. Since current evidence indicates that introns were present in genes before the divergence of prokaryotes and eukaryotes, it is possible that the original distribution of introns within the minigene has been lost by the random deletion of introns from the spectrin gene.  相似文献   

17.
Integrated retroviral DNA is flanked by short direct repeats of the target DNA. The length of these repeats is specific for the provirus that is integrated (H.E. Varmus, in J.A. Shapiro, ed., Mobile Genetic Elements, 1983). For the human immunodeficiency virus type I (HIV-1), the length of the direct repeats in the target DNA was shown to be 5 bp in one case (Muesing et al., Nature [London] 313:450-458, 1985) and 7 bp in another (Starcich et al., Science 227:538-540, 1985). One possible explanation for this discrepancy is that the direct repeats flanking HIV-1 proviruses are variable. To investigate this, we analyzed the junctions between HIV-1 proviral DNA and human DNA from nine individual clones. In each clone the provirus was flanked by a 5-bp direct repeat of human DNA. Analysis of the proviral clone previously described as being flanked by a 7-bp direct repeat of target DNA (Starcich et al., op. cit.) revealed that this clone was flanked by a 5-bp repeat instead. Therefore, we conclude that HIV-1 proviruses are flanked by 5-bp direct repeats of human DNA. The sequences of the 5-bp duplications from the different proviral clones do not have any apparent similarity to each other or to HIV-1 DNA.  相似文献   

18.
The hybridization of human DNA with three non-cross-hybridizing monomers (68 bp in length) of the heterochromatic Sau3A family of DNA repeats, indicates the coexistence within a Sau3A-positive genomic block of divergent Sau3A units as well as of unrelated sequences. To gain some insight into the structure of these human heterochromatic DNA regions, three previously cloned Sau3A-positive genomic fragments (with a total length of approximately 1900 base-pairs (bp] were sequenced. The analysis of the sequences showed the presence of clustered Sau3A units with different degrees of divergence and of two DNA regions of approximately 100 bp and 291 bp in length, unrelated to the family of repeats. A consensus sequence derived from the 24 identified Sau3A monomers presents, among highly variable regions, two less variant regions of 8 bp and 10 bp in length, respectively. The Sau3A-unrelated DNA fragment 291 bp in length, used as a probe on genomic DNA digested with a series of restriction enzymes, defines a "new" family of DNA repeats possessing periodicities for HaeIII (HaeIII family). Sau3A and HaeIII repeats display a high degree of linkage in a collection of Sau3A-positive genomic recombinant phages.  相似文献   

19.
In this study we have identified and characterized dopamine receptor D4 (DRD4) exon III tandem repeats in 33 public available nucleotide sequences from different mammalian species. We found that the tandem repeat in canids could be described in a novel and simple way, namely, as a structure composed of 15- and 12- bp modules. Tandem repeats composed of 18-bp modules were found in sequences from the horse, zebra, onager, and donkey, Asiatic bear, polar bear, common raccoon, dolphin, harbor porpoise, and domestic cat. Several of these sequences have been analyzed previously without a tandem repeat being found. In the domestic cow and gray seal we identified tandem repeats composed of 36-bp modules, each consisting of two closely related 18-bp basic units. A tandem repeat consisting of 9-bp modules was identified in sequences from mink and ferret. In the European otter we detected an 18-bp tandem repeat, while a tandem repeat consisting of 27-bp modules was identified in a sequence from European badger. Both these tandem repeats were composed of 9-bp basic units, which were closely related with the 9-bp repeat modules identified in the mink and ferret. Tandem repeats could not be identified in sequences from rodents. All tandem repeats possessed a high GC content with a strong bias for C. On phylogenetic analysis of the tandem repeats evolutionary related species were clustered into the same groups. The degree of conservation of the tandem repeats varied significantly between species. The deduced amino acid sequences of most of the tandem repeats exhibited a high propensity for disorder. This was also the case with an amino acid sequence of the human DRD4 exon III tandem repeat, which was included in the study for comparative purposes. We identified proline-containing motifs for SH3 and WW domain binding proteins, potential phosphorylation sites, PDZ domain binding motifs, and FHA domain binding motifs in the amino acid sequences of the tandem repeats. The numbers of potential functional sites varied pronouncedly between species. Our observations provide a platform for future studies of the architecture and evolution of the DRD4 exon III tandem repeat, and they suggest that differences in the structure of this tandem repeat contribute to specialization and generation of diversity in receptor function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号