首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Santiago E  Caballero A 《Genetics》2005,169(1):475-483
The effect of genetic hitchhiking on neutral variation is analyzed in subdivided populations with differentiated demes. After fixation of a favorable mutation, the consequences on particular subpopulations can be radically different. In the subpopulation where the mutation first appeared by mutation, variation at linked neutral loci is expected to be reduced, as predicted by the classical theory. However, the effect in the other subpopulations, where the mutation is introduced by migration, can be the opposite. This effect depends on the level of genetic differentiation of the subpopulations, the selective advantage of the mutation, the recombination frequency, and the population size, as stated by analytical derivations and computer simulations. The characteristic outcomes of the effect are three. First, the genomic region of reduced variation around the selected locus is smaller than that predicted in a panmictic population. Second, for more distant neutral loci, the amount of variation increases over the level they had before the hitchhiking event. Third, for these loci, the spectrum of gene frequencies is dominated by an excess of alleles at intermediate frequencies when compared with the neutral theory. At these loci, hitchhiking works like a system that takes variation from the between-subpopulation component and introduces it into the subpopulations. The mechanism can also operate in other systems in which the genetic variation is distributed in clusters with limited exchange of variation, such as chromosome arrangements or genomic regions closely linked to targets of balancing selection.  相似文献   

2.
Loci with higher levels of population differentiation than the neutral expectation are traditionally interpreted as evidence of ongoing selection that varies in space. This article emphasizes an alternative explanation that has been largely overlooked to date: in species subdivided into large subpopulations, enhanced differentiation can also be the signature left by the fixation of an unconditionally favorable mutation on its chromosomal neighborhood. This is because the hitchhiking effect is expected to diminish as the favorable mutation spreads from the deme in which it originated to other demes. To discriminate among the two alternative scenarios one needs to investigate how genetic structure varies along the chromosomal region of the locus. Local hitchhiking is shown to generate a single sharp peak of differentiation centered on the adaptive polymorphism and the standard signature of a selective sweep only in those subpopulations in which the allele is favored. Global hitchhiking produces two domes of differentiation on either side of the fixed advantageous mutation and signatures of a selective sweep in every subpopulation, albeit of different magnitude. Investigating population differentiation around a locus that strongly differentiates two otherwise genetically similar populations of the marine mussel Mytilus edulis, plausible evidence for the global hitchhiking hypothesis has been obtained. Global hitchhiking is a neglected phenomenon that might prove to be important in species with large population sizes such as many marine invertebrates.  相似文献   

3.
Mutator alleles that elevate the genomic mutation rate may invade nonrecombining populations by hitchhiking with beneficial mutations. Mutators have been repeatedly observed to take over adapting laboratory populations and have been found at high frequencies in both microbial pathogen and cancer populations in nature. Recently, we have shown that mutators are only favored by selection in sufficiently large populations and transition to being disfavored as population size decreases. This population size‐dependent sign inversion in selective effect suggests that population structure may also be an important determinant of mutation rate evolution. Although large populations may favor mutators, subdividing such populations into sufficiently small subpopulations (demes) might effectively inhibit them. On the other hand, migration between small demes that otherwise inhibit hitchhiking may promote mutator fixation in the whole metapopulation. Here, we use stochastic, agent‐based simulations and evolution experiments with the yeast Saccharomyces cerevisiae to show that mutators can, indeed, be favored by selection in subdivided metapopulations composed of small demes connected by sufficient migration. In fact, we show that population structure plays a previously unsuspected role in promoting mutator success in subdivided metapopulations when migration is rare.  相似文献   

4.
C. Colby  S. M. Williams 《Genetics》1995,140(3):1129-1136
Based on recent studies in single-celled organisms, it has been argued that a fitness benefit associated with a mutation will increase the probability of that mutation occurring. This increase is independent of mutation rates at other loci and is called adaptive mutagenesis. We modeled the effect of adaptive mutagenesis on populations of haploid organisms with adaptive mutation rates ranging from 0 to 1 X 10(-5). Allele frequencies at the selected locus and a neutral linked locus were tracked. We also observed the amount of linkage disequilibrium during the selective sweep and the final heterozygosity after the sweep. The presence of adaptive mutagenesis increases the number of genetic backgrounds carrying the new fitter allele, making the outcomes more representative of the population before the selection. Therefore, more neutral genetic variation is preserved in simulations with adaptive mutagenesis than in those without it due to hitchhiking. Since adaptive mutagenesis is time-dependent, it can generate mutants when other mechanisms of mutation cannot. In addition, adaptive mutagenesis has the potential to confound both phylogeny construction and the detection of natural selection from patterns of nucleotide variation.  相似文献   

5.
The effect of multi-allelic balancing selection on nucleotide diversity at linked neutral sites was investigated by simulations of subdivided populations. The motivation is to understand the behaviour of self-recognition systems such as the MHC and plant self-incompatibility. For neutral sites, two types of subdivision are present: (1) into demes (connected by migration), and (2) into classes defined by different functional alleles at the selected locus (connected by recombination). Previous theoretical studies of each type of subdivision separately have shown that each increases diversity, and decreases the relative frequencies of low-frequency variants, at neutral sites or loci. We show here that the two types of subdivision act non-additively when sampling is at the whole population level, and that subdivision produces some non-intuitive results. For instance, in highly subdivided populations, genetic diversity at neutral sites may decrease with tighter linkage to a selected locus or site. Another conclusion is that, if there is population subdivision, balancing selection leads to decreased expected FST values for neutral sites linked to the selected locus. Finally, we show that the ability to detect balancing selection by its effects on linked variation, using tests such as Tajima's D, is reduced when genes in a subdivided population are sampled from the total population, rather than within demes.  相似文献   

6.
Martin G  Otto SP  Lenormand T 《Genetics》2006,172(1):593-609
In finite populations, linkage disequilibria generated by the interaction of drift and directional selection (Hill-Robertson effect) can select for sex and recombination, even in the absence of epistasis. Previous models of this process predict very little advantage to recombination in large panmictic populations. In this article we demonstrate that substantial levels of linkage disequilibria can accumulate by drift in the presence of selection in populations of any size, provided that the population is subdivided. We quantify (i) the linkage disequilibrium produced by the interaction of drift and selection during the selective sweep of beneficial alleles at two loci in a subdivided population and (ii) the selection for recombination generated by these disequilibria. We show that, in a population subdivided into n demes of large size N, both the disequilibrium and the selection for recombination are equivalent to that expected in a single population of a size intermediate between the size of each deme (N) and the total size (nN), depending on the rate of migration among demes, m. We also show by simulations that, with small demes, the selection for recombination is stronger than both that expected in an unstructured population (m = 1 - 1/n) and that expected in a set of isolated demes (m = 0). Indeed, migration maintains polymorphisms that would otherwise be lost rapidly from small demes, while population structure maintains enough local stochasticity to generate linkage disequilibria. These effects are also strong enough to overcome the twofold cost of sex under strong selection when sex is initially rare. Overall, our results show that the stochastic theories of the evolution of sex apply to a much broader range of conditions than previously expected.  相似文献   

7.
Simulations are used to investigate the expected pattern of variation at loci under different forms of multi-allelic balancing selection in a finite island model of a subdivided population. The objective is to evaluate the effect of restricted migration among demes on the distribution of polymorphism at the selected loci at equilibrium, and to compare the results with those expected for a neutral locus. The results show that the expected number of alleles maintained, and numbers of nucleotide differences between alleles, are relatively insensitive to the migration rate, and differentiation remains low even under very restricted migration. However, nucleotide divergence between copies of functionally identical alleles increases sharply when migration decreases. These results are discussed in relation to published surveys of allelic diversity in MHC and plant self-incompatibility systems, and to the possibility of inferring ancient population genetic events and processes. In addition, it is shown that, for sporophytic self-incompatibility systems, it is not necessarily true in a subdivided population that recessive alleles are more frequent than dominant ones.  相似文献   

8.
In this paper, we investigated the genetic structure and distribution of allelic frequencies at the gametophytic self-incompatibility locus in three populations of Prunus avium L. In line with theoretical predictions under balancing selection, genetic structure at the self-incompatibility locus was almost three times lower than at seven unlinked microsatellites. Furthermore, we found that S-allele frequencies in wild cherry populations departed significantly from the expected isoplethic distribution towards which balancing selection is expected to drive allelic frequencies (i.e. identical frequency equal to the inverse of the number of alleles in the population). To assess whether this departure could be caused either by drift alone or by population structure, we used numerical simulations to compare our observations with allelic frequency distributions expected : (1) within a single deme from a subdivided population with various levels of differentiation; and (2) within a finite panmictic population with identical allelic diversity. We also investigated the effects of sample size and degree of population structure on tests of departure from isoplethic equilibrium. Overall, our results showed that the observed allele frequency distributions were consistent with a model of subdivided population with demes linked by moderate migration rate.  相似文献   

9.
A population genetic model with a single locus at which balancing selection acts and many linked loci at which neutral mutations can occur is analysed using the coalescent approach. The model incorporates geographic subdivision with migration, as well as mutation, recombination, and genetic drift of neutral variation. It is found that geographic subdivision can affect genetic variation even with high rates of migration, providing that selection is strong enough to maintain different allele frequencies at the selected locus. Published sequence data from the alcohol dehydrogenase locus of Drosophila melanogaster are found to fit the proposed model slightly better than a similar model without subdivision.  相似文献   

10.
Gene genealogies in a metapopulation   总被引:1,自引:0,他引:1  
Wakeley J  Aliacar N 《Genetics》2001,159(2):893-905
A simple genealogical process is found for samples from a metapopulation, which is a population that is subdivided into a large number of demes, each of which is subject to extinction and recolonization and receives migrants from other demes. As in the migration-only models studied previously, the genealogy of any sample includes two phases: a brief sample-size adjustment followed by a coalescent process that dominates the history. This result will hold for metapopulations that are composed of a large number of demes. It is robust to the details of population structure, as long as the number of possible source demes of migrants and colonists for each deme is large. Analytic predictions about levels of genetic variation are possible, and results for average numbers of pairwise differences within and between demes are given. Further analysis of the expected number of segregating sites in a sample from a single deme illustrates some previously known differences between migration and extinction/recolonization. The ancestral process is also amenable to computer simulation. Simulation results show that migration and extinction/recolonization have very different effects on the site-frequency distribution in a sample from a single deme. Migration can cause a U-shaped site-frequency distribution, which is qualitatively similar to the pattern reported recently for positive selection. Extinction and recolonization, in contrast, can produce a mode in the site-frequency distribution at intermediate frequencies, even in a sample from a single deme.  相似文献   

11.
During adaptive evolutionary processes substantial heterogeneity in selective pressure might act across local habitats in sympatry. Examples are selection for drug resistance in malaria or herbicide resistance in weeds. In such setups standard population-genetic assumptions (homogeneous constant selection pressures, random mating etc.) are likely to be violated. To avoid misinferences on the strength and pattern of natural selection it is therefore necessary to adjust population-genetic theory to meet the specifics driving adaptive processes in particular organisms. We introduce a deterministic model in which selection acts heterogeneously on a population of haploid individuals across different patches over which the population randomly disperses every generation. A fixed proportion of individuals mates exclusively within patches, whereas the rest mates randomly across all patches. We study how the allele frequencies at neutral markers are affected by the spread of a beneficial mutation at a closely linked locus (genetic hitchhiking). We provide an analytical solution for the frequency change and the expected heterozygosity at the neutral locus after a single copy of a beneficial mutation became fixed. We furthermore provide approximations of these solutions which allow for more obvious interpretations. In addition, we validate the results by stochastic simulations. Our results show that the application of standard population-genetic theory is accurate as long as differences across selective environments are moderate. However, if selective differences are substantial, as for drug resistance in malaria, herbicide resistance in weeds, or insecticide resistance in agriculture, it is necessary to adapt available theory to the specifics of particular organisms.  相似文献   

12.
In the area of evolutionary theory, a key question is which portions of the genome of a species are targets of natural selection. Genetic hitchhiking is a theoretical concept that has helped to identify various such targets in natural populations. In the presence of recombination, a severe reduction in sequence diversity is expected around a strongly beneficial allele. The site frequency spectrum is an important tool in genome scans for selection and is composed of the numbers , where is the number of single nucleotide polymorphisms (SNPs) present in from individuals. Previous work has shown that both the number of low- and high-frequency variants are elevated relative to neutral evolution when a strongly beneficial allele fixes. Here, we follow a recent investigation of genetic hitchhiking using a marked Yule process to obtain an analytical prediction of the site frequency spectrum in a panmictic population at the time of fixation of a highly beneficial mutation. We combine standard results from the neutral case with the effects of a selective sweep. As simulations show, the resulting formula produces predictions that are more accurate than previous approaches for the whole frequency spectrum. In particular, the formula correctly predicts the elevation of low- and high-frequency variants and is significantly more accurate than previously derived formulas for intermediate frequency variants.  相似文献   

13.
Johnson T 《Genetics》1999,151(4):1621-1631
Natural selection acts in three ways on heritable variation for mutation rates. A modifier allele that increases the mutation rate is (i) disfavored due to association with deleterious mutations, but is also favored due to (ii) association with beneficial mutations and (iii) the reduced costs of lower fidelity replication. When a unique beneficial mutation arises and sweeps to fixation, genetic hitchhiking may cause a substantial change in the frequency of a modifier of mutation rate. In previous studies of the evolution of mutation rates in sexual populations, this effect has been underestimated. This article models the long-term effect of a series of such hitchhiking events and determines the resulting strength of indirect selection on the modifier. This is compared to the indirect selection due to deleterious mutations, when both types of mutations are randomly scattered over a given genetic map. Relative to an asexual population, increased levels of recombination reduce the effects of beneficial mutations more rapidly than those of deleterious mutations. However, the role of beneficial mutations in determining the evolutionarily stable mutation rate may still be significant if the function describing the cost of high-fidelity replication has a shallow gradient.  相似文献   

14.
Summary Conditions are derived for a protected polymorphism in a dioecious population subdivided into an arbitrary number of demes which exchange migrants. Generations are discrete and nonoverlapping; mutation and random drift are neglected. The analysis is restricted to a diallelic autosomal locus. In contrast to the monoecious case, the protection criteria depend on the order of migration and selection; they become identical for adult and juvenile migration if both the male and female backward migration matrices are symmetric, or the migration or selection patterns in the two sexes are the same. The protection conditions are presented explicitly for the Levene model. A recessive allele is protected in a panmictic dioecious population if the unweighted average of the recessive-to-dominant fitness ratios in the two sexes exceeds unity.Supported by the National Science Foundation (Grant No. DEB77-21494)  相似文献   

15.
Constraints on the origin and maintenance of genetic kin recognition   总被引:3,自引:0,他引:3  
Kin-recognition mechanisms allow helping behaviors to be directed preferentially toward related individuals, and could be expected to evolve in many cases. However, genetic kin recognition requires a genetic polymorphism on which recognition is based, and kin discriminating behaviors will affect the evolution of such polymorphism. It is unclear whether genetic polymorphisms used in kin recognition should be maintained by extrinsic selection pressures or not, as opposite conclusions have been reached by analytical one-locus models and simulations exploring different population structures. We analyze a two-locus model in a spatially subdivided population following the island model of dispersal between demes of finite size. We find that in the absence of mutation, selection eliminates polymorphism in most cases, except with extreme spatial structure and low recombination. With mutation, the population may reach a stable limit cycle over which both loci are polymorphic; however, the average frequency of conditional helping can be high only under strong structure and low recombination. Finally, we review evidence for extrinsic selection maintaining polymorphism on which kin recognition is based.  相似文献   

16.
Consequences of population structure on genes under balancing selection   总被引:5,自引:0,他引:5  
This paper describes a new approach to modeling population structure for genes under strong balancing selection of the type seen in plant self-incompatibility systems and the major histocompatibility complex (MHC) system of vertebrates. Simple analytic solutions for the number of alleles maintained at equilibrium and the expected proportion of alleles shared between demes at various levels are derived and checked against simulation results. The theory accurately captures the dynamics of allele number in a subdivided population and identifies important values of m (migration rate) at which allele number and distribution change qualitatively. Starting from a panmictic population, as migration among demes decreases a qualitative change in dynamics is seen at approximately m(crit) approximately equal to the square root of(s/4piNT) where NT is the total population size and s is a measure of the strength of selection. At this point, demes can no longer maintain their panmictic allele number, due to increasing isolation from the total population. Another qualitative change occurs at a migration rate on the same order of magnitude as the mutation rate, mu. At this point, the demes are highly differentiated for allele complement, and the total number of alleles in the population is increased. Because in general u < m<(crit) at intermediate migration rates slightly fewer alleles may be maintained in the total population than are maintained at panmixia. Within this range, total allele number may not be the best indicator of whether a population is effectively panmictic, and some caution should be used when interpreting samples from such populations. The theory presented here can help to analyze data from genes under balancing selection in subdivided populations.  相似文献   

17.
Although there have many studies of the population genetical consequences of environmental variation, little is known about the combined effects of genetic drift and fluctuating selection in structured populations. Here we use diffusion theory to investigate the effects of temporally and spatially varying selection on a population of haploid individuals subdivided into a large number of demes. Using a perturbation method for processes with multiple time scales, we show that as the number of demes tends to infinity, the overall frequency converges to a diffusion process that is also the diffusion approximation for a finite, panmictic population subject to temporally fluctuating selection. We find that the coefficients of this process have a complicated dependence on deme size and migration rate, and that changes in these demographic parameters can determine both the balance between the dispersive and stabilizing effects of environmental variation and whether selection favors alleles with lower or higher fitness variance.  相似文献   

18.
Kim Y  Stephan W 《Genetics》2000,155(3):1415-1427
Due to relatively high rates of strongly selected deleterious mutations, directional selection on favorable alleles (causing hitchhiking effects on linked neutral polymorphisms) is expected to occur while a deleterious mutation-selection balance is present in a population. We analyze this interaction of directional selection and background selection and study their combined effects on neutral variation, using a three-locus model in which each locus is subjected to either deleterious, favorable, or neutral mutations. Average heterozygosity is measured by simulations (1) at the stationary state under the assumption of recurrent hitchhiking events and (2) as a transient level after a single hitchhiking event. The simulation results are compared to theoretical predictions. It is shown that known analytical solutions describing the hitchhiking effect without background selection can be modified such that they accurately predict the joint effects of hitchhiking and background on linked, neutral variation. Generalization of these results to a more appropriate multilocus model (such that background selection can occur at multiple sites) suggests that, in regions of very low recombination rates, stationary levels of nucleotide diversity are primarily determined by hitchhiking, whereas in regions of high recombination, background selection is the dominant force. The implications of these results on the identification and estimation of the relevant parameters of the model are discussed.  相似文献   

19.
Interdemic selection by the differential migration of individuals out from demes of high fitness and into demes of low fitness (Phase III) is one of the most controversial aspects of Wright's Shifting Balance Theory. I derive a relationship between Phase III migration and the interdemic selection differential, S, and show its potential effect on FST. The relationship reveals a diversifying effect of interdemic selection by Phase III migration on the genetic structure of a metapopulation. Using experimental metapopulations, I explored the effect of Phase III migration on FST by comparing the genetic variance among demes for two different patterns of migration: (1) island model migration and (2) Wright's Phase III migration. Although mean migration rates were the same, I found that the variance among demes in migration rate was significantly higher with Phase III than with island model migration. As a result, FST for the frequency of a neutral marker locus was higher with Phase III than it was with island model migration. By increasing FST, Phase III enhanced the genetic differentiation among demes for traits not subject to interdemic selection. This feature makes Wright's process different from individual selection which, by reducing effective population size, decreases the genetic variance within demes for all other traits. I discussed this finding in relation to the efficacy of Phase III and random migration for effecting peak shifts, and the contribution of genes with indirect effects to among‐deme variation.  相似文献   

20.
Two modes of assortative mating, partial selfing and assorting by phenotypic classes, are studied in a subdivided population. Differential viability is allowed and the selection intensities and assorting tendencies are permitted to vary among the habitats. There exists a symmetric polymorphism; we delimit its level of heterozygosity and stability nature (dependent on the selection intensities and assorting propensities). This complements studies of the fixation states and thereby provides further insight into the global equilibrium structure in subdivided populations. Circumstances are given where the fixation states and symmetric polymorphism comprise the global equilibrium structure. Examples are also given where migration engenders stable polymorphic equilibria and stable polymorphic equilibrium cycles which are absent in single demes without migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号