首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A primary objection from a population genetics perspective to a multiregional model of modern human origins is that the model posits a large census size, whereas genetic data suggest a small effective population size. The relationship between census size and effective size is complex, but arguments based on an island model of migration show that if the effective population size reflects the number of breeding individuals and the effects of population subdivision, then an effective population size of 10,000 is inconsistent with the census size of 500,000 to 1,000,000 that has been suggested by archeological evidence. However, these models have ignored the effects of population extinction and recolonization, which increase the expected variance among demes and reduce the inbreeding effective population size. Using models developed for population extinction and recolonization, we show that a large census size consistent with the multiregional model can be reconciled with an effective population size of 10,000, but genetic variation among demes must be high, reflecting low interdeme migration rates and a colonization process that involves a small number of colonists or kin-structured colonization. Ethnographic and archeological evidence is insufficient to determine whether such demographic conditions existed among Pleistocene human populations, and further work needs to be done. More realistic models that incorporate isolation by distance and heterogeneity in extinction rates and effective deme sizes also need to be developed. However, if true, a process of population extinction and recolonization has interesting implications for human demographic history.  相似文献   

2.
A simple genealogical structure is found for a general finite island model of population subdivision. The model allows for variation in the sizes of demes, in contributions to the migrant pool, and in the fraction of each deme that is replaced by migrants every generation. The ancestry of a sample of non-recombining DNA sequences has a simple structure when the sample size is much smaller than the total number of demes in the population. This allows an expression for the probability distribution of the number of segregating sites in the sample to be derived under the infinite-sites mutation model. It also yields easily computed estimators of the migration parameter for each deme in a multi-deme sample. The genealogical process is such that the lineages ancestral to the sample tend to accumulate in demes with low migration rates and/or which contribute disproportionately to the migrant pool. In addition, common ancestor or coalescent events tend to occur in demes of small size. This provides a framework for understanding the determinants of the effective size of the population, and leads to an expression for the probability that the root of a genealogy occurs in a particular geographic region, or among a particular set of demes.  相似文献   

3.
In a metapopulation, the process of recurrent local extinction and recolonization gives rise to an age structure among demes. Recently established demes will tend to differ from older demes in terms of the levels of genetic diversity found within them and the way this diversity is distributed among demes in the same and different ages. The effects of population turnover on average levels of genetic diversity among demes in a metapopulation have been the focus of much attention, both for neutral and nonneutral loci, but much less is known about the distribution of nonneutral genetic diversity among demes of different ages. In this paper, we used computer simulations to study the distribution of genetic load, inbreeding depression and heterosis in an age‐structured metapopulation. We found that, for mildly deleterious mutations, within‐deme inbreeding depression increased, whereas heterosis and genetic load decreased with deme age following severe colonization bottlenecks. In contrast, recessive lethal alleles tended to be purged during colonization, with older populations showing higher genetic load and higher within‐deme inbreeding depression. Heterosis caused by recessive lethal alleles and resulting from gene flow among different demes tended to be greatest for young demes, because the mutations responsible tended to be purged in the first few generations after colonization, but its effects increased again as populations grow older as a result of immigration. Our results point to a need for estimates of genetic diversity, genetic load, within‐deme inbreeding depression and heterosis in demes of different age classes separately.  相似文献   

4.
Previous studies have shown that temporally fluctuating environments can create indirect selection for modifiers of evolvability. Here, we use a simple computational model to investigate whether spatially varying environments (multiple demes with limited migration among them, and a different, static selective optimum in each) can also create indirect selection for increased evolvability. The answer is surprisingly complicated. Spatial variation in the environment can sharply reduce the survival rate of migrants, because migrants may be maladapted to their new deme, relative to incumbents. The incumbent advantage can be removed by occasional extinctions in single demes. After all incumbents in a particular deme die, incoming migrants from other demes will, on average, be similarly maladapted to the new environment. This sets off a race to adapt rapidly. Over many extinction events, and the subsequent invasions by maladapted immigrants into a new environment, indirect selection for the ability to adapt rapidly, also known as high evolvability, may result.  相似文献   

5.
In this paper, we use a model by Slatkin (1977) to investigate the genetic effects of extinction and recolonization for a species whose population structure consists of an array of local demes with some migration among them. In particular, we consider the conditions under which extinction and recolonization might enhance or diminish gene flow and increase or decrease the rate of genetic differentiation relative to the static case with no extinctions. We explicitly take into account the age-structure that is established within the array of populations by the extinction and colonization process. We also consider two different models of the colonization process, the so-called “migrant pool” and “propagule pool” models. Our theoretical studies indicate that the genetic effects of extinction and colonization depend upon the relative magnitudes of K, the number of individuals founding new colonies, and 2Nm, twice the number of migrants moving into extant populations. We find that these genetic effects are surprisingly insensitive to the extinction rate. We conclude that, in order to assess the genetic effects of the population dynamics, we must first answer an important empirical question that is essentially ecological: is colonization a behavior distinct from migration?  相似文献   

6.
Nonequilibrium migration in human history   总被引:1,自引:0,他引:1  
Wakeley J 《Genetics》1999,153(4):1863-1871
A nonequilibrium migration model is proposed and applied to genetic data from humans. The model assumes symmetric migration among all possible pairs of demes and that the number of demes is large. With these assumptions it is straightforward to allow for changes in demography, and here a single abrupt change is considered. Under the model this change is identical to a change in the ancestral effective population size and might be caused by changes in deme size, in the number of demes, or in the migration rate. Expressions for the expected numbers of sites segregating at particular frequencies in a multideme sample are derived. A maximum-likelihood analysis of independent polymorphic restriction sites in humans reveals a decrease in effective size. This is consistent with a change in the rates of migration among human subpopulations from ancient low levels to present high ones.  相似文献   

7.
Intra-deme molecular diversity in spatially expanding populations   总被引:23,自引:0,他引:23  
We report here a simulation study examining the effect of a recent spatial expansion on the pattern of molecular diversity within a deme. We first simulate a range expansion in a virtual world consisting in a two-dimensional array of demes exchanging a given proportion of migrants (m) with their neighbors. The recorded demographic and migration histories are then used under a coalescent approach to generate the genetic diversity in a sample of genes. We find that the shape of the gene genealogies and the overall pattern of diversity within demes depend not only on the age of the expansion but also on the level of gene flow between neighboring demes, as measured by the product Nm, where N is the size of a deme. For small Nm values (< approximately 20 migrants sent outwards per generation), a substantial proportion of coalescent events occur early in the genealogy, whereas with larger levels of gene flow, most coalescent events occur around the time of the onset of the spatial expansion. Gene genealogies are star shaped, and mismatch distributions are unimodal after a range expansion for large Nm values. In contrast, gene genealogies present a mixture of both very short and very long branch lengths, and mismatch distributions are multimodal for small Nm values. It follows that statistics used in tests of selective neutrality like Tajima's D statistic or Fu's F(S) statistic will show very significant negative values after a spatial expansion only in demes with high Nm values. In the context of human evolution, this difference could explain very simply the fact that analyses of samples of mitochondrial DNA sequences reveal multimodal mismatch distributions in hunter-gatherers and unimodal distributions in post-Neolithic populations. Indeed, the current simulations show that a recent increase in deme size (resulting in a larger Nm value) is sufficient to prevent recent coalescent events and thus lead to unimodal mismatch distributions, even if deme sizes (and therefore Nm values) were previously much smaller. The fact that molecular diversity within deme is so dependent on recent levels of gene flow suggests that it should be possible to estimate Nm values from samples drawn from a single deme.  相似文献   

8.
A. population structure favorable to the evolution of an altruistic trait is studied by Monte Carlo simulation. The model is based on a small-scale nonindustrial human society but seems generalizable to other highly social mammals. Three hierarchical levels are recognized: 1) the ecologically isolated local group (hamlet) which may be composed of kin and/or unrelated individuals; 2) the deme (settlement) comprising several such groups which interbreed; and 3) the set of demes (metapopulation) among which gene flow occurs. The first two levels of the model are based on D. S. Wilson's structured deme concept; the third allows for gene flow among demes in the metapopulation and for the structured diffusion of alleles across a wider area than might be included within the scope of a single deme. The simulation models genetic drift by a process of hamlet formation which may be random, or variously kin-structured. Hamlets may then become extinct based on a probability function of their gene frequencies. Individual selection within settlements is modeled deterministically, and gene flow among settlements is modeled as two-dimensional steppingstone migration of random or kin-structured groups. Results of the simulations show that, with realistic values for group sizes, moderate extinction rate, and high rates of migration (m > 27%), disadvantageous alleles (s = 10% and 25%) may increase markedly due to differential hamlet extinction over the course of 50 generations. The greater the degree of kin-structuring of founder groups, the higher the variance among hamlets and the faster the rate of increase of the allele for altruism. Nonetheless, even in some randomly founded groups, a clear increase in the altruism gene frequency occurred. It is also notable that kin-structured group selection by hamlet extinction may be effective when the initial frequency of altruism genes is very low (average of one per deme) and among a relatively small number of demes (25). Thus the process of group extinction in a hierarchically structured population allows rapid increase of an allele for altruism under plausible demographic conditions.  相似文献   

9.
N. Takahata 《Genetics》1991,129(2):585-595
In a geographically structured population, the interplay among gene migration, genetic drift and natural selection raises intriguing evolutionary problems, but the rigorous mathematical treatment is often very difficult. Therefore several approximate formulas were developed concerning the coalescence process of neutral genes and the fixation process of selected mutations in an island model, and their accuracy was examined by computer simulation. When migration is limited, the coalescence (or divergence) time for sampled neutral genes can be described by the convolution of exponential functions, as in a panmictic population, but it is determined mainly by migration rate and the number of demes from which the sample is taken. This time can be much longer than that in a panmictic population with the same number of breeding individuals. For a selected mutation, the spreading over the entire population was formulated as a birth and death process, in which the fixation probability within a deme plays a key role. With limited amounts of migration, even advantageous mutations take a large number of generations to spread. Furthermore, it is likely that these mutations which are temporarily fixed in some demes may be swamped out again by non-mutant immigrants from other demes unless selection is strong enough. These results are potentially useful for testing quantitatively various hypotheses that have been proposed for the origin of modern human populations.  相似文献   

10.
A diffusion approximation is obtained for the frequency of a selected allele in a population comprised of many subpopulations or demes. The form of the diffusion is equivalent to that for an unstructured population, except that it occurs on a longer time scale when migration among demes is restricted. This many-demes diffusion limit relies on the collection of demes always being in statistical equilibrium with respect to migration and drift for a given allele frequency in the total population. Selection is assumed to be weak, in inverse proportion to the number of demes, and the results hold for any deme sizes and migration rates greater than zero. The distribution of allele frequencies among demes is also described.  相似文献   

11.
Wakeley J  Lessard S 《Genetics》2003,164(3):1043-1053
We develop predictions for the correlation of heterozygosity and for linkage disequilibrium between two loci using a simple model of population structure that includes migration among local populations, or demes. We compare the results for a sample of size two from the same deme (a single-deme sample) to those for a sample of size two from two different demes (a scattered sample). The correlation in heterozygosity for a scattered sample is surprisingly insensitive to both the migration rate and the number of demes. In contrast, the correlation in heterozygosity for a single-deme sample is sensitive to both, and the effect of an increase in the number of demes is qualitatively similar to that of a decrease in the migration rate: both increase the correlation in heterozygosity. These same conclusions hold for a commonly used measure of linkage disequilibrium (r(2)). We compare the predictions of the theory to genomic data from humans and show that subdivision might account for a substantial portion of the genetic associations observed within the human genome, even though migration rates among local populations of humans are relatively large. Because correlations due to subdivision rather than to physical linkage can be large even in a single-deme sample, then if long-term migration has been important in shaping patterns of human polymorphism, the common practice of disease mapping using linkage disequilibrium in "isolated" local populations may be subject to error.  相似文献   

12.
The evolution of the gene frequencies at a single multiallelic locus under the joint action of migration and viability selection with dominance is investigated. The monoecious, diploid population is subdivided into finitely many panmictic colonies that exchange adult migrants independently of genotype. Underdominance and overdominance are excluded. If the degree of dominance is deme independent for every pair of alleles, then under the Levene model, the qualitative evolution of the gene frequencies (i.e., the existence and stability of the equilibria) is the same as without dominance. In particular: (i) the number of demes is a generic upper bound on the number of alleles present at equilibrium; (ii) there exists exactly one stable equilibrium, and it is globally attracting; and (iii) if there exists an internal equilibrium, it is globally asymptotically stable. Analytic examples demonstrate that if either the Levene model does not apply or the degree of dominance is deme dependent, then the above results can fail. A complete global analysis of weak migration and weak selection on a recessive allele in two demes is presented.  相似文献   

13.
Lessard S 《Genetics》2007,177(2):1249-1254
An exact sampling formula for a Wright-Fisher population of fixed size N under the infinitely many neutral alleles model is deduced. This extends the Ewens formula for the configuration of a random sample to the case where the sample is drawn from a population of small size, that is, without the usual large-N and small-mutation-rate assumption. The formula is used to prove a conjecture ascertaining the validity of a diffusion approximation for the frequency of a mutant-type allele under weak selection in segregation with a wild-type allele in the limit finite-island model, namely, a population that is subdivided into a finite number of demes of size N and that receives an expected fraction m of migrants from a common migrant pool each generation, as the number of demes goes to infinity. This is done by applying the formula to the migrant ancestors of a single deme and sampling their types at random. The proof of the conjecture confirms an analogy between the island model and a random-mating population, but with a different timescale that has implications for estimation procedures.  相似文献   

14.
The effect of population structure on the probability of fixation of a newly introduced mutant under weak selection is studied using a coalescent approach. Wright's island model in a framework of a finite number of demes is assumed and two selection regimes are considered: a beneficial allele model and a linear game among offspring. A first-order approximation of the fixation probability for a single mutant with respect to the intensity of selection is deduced. The approximation requires the calculation of expected coalescence times, under neutrality, for lineages starting from two or three sampled individuals. The results are obtained in a general setting without assumptions on the number of demes, the deme size or the migration rate, which allows for simultaneous coalescence or migration events in the genealogy of the sampled individuals. Comparisons are made with limit cases as the deme size or the number of demes goes to infinity or the migration rate goes to zero for which a diffusion approximation approach is possible. Conditions for selection to favor a mutant strategy replacing a resident strategy in the context of a linear game in a finite island population are addressed.  相似文献   

15.
The "infinite sites" model in the absence of recombination is examined in a subdivided population in which there is arbitrary migration among demes. It is shown that, if the migration matrix is symmetric and irreducible, the average number of sites that differ in two alleles chosen from the same deme depends only on an effective size of the whole population and not on either the elements of the migration matrix or the size of each deme separately. If there are n demes all of size N, the average number of sites that differ in two alleles chosen from the same deme is 4nN mu, where mu is the average mutation rate per site. This is the same value as for two alleles drawn from a panmictic population of size nN. The average number of sites that differ in alleles drawn from the same and from different demes can provide some information about the degree of population subdivision, as is illustrated by using the data of Kreitman and Aquadé (1986, Proc. Nat. Acad. Sci. U.S.A., 83, 3562) on Drosophila melanogaster.  相似文献   

16.
Using demes from experimental metapopulations of the flour beetle, Tribolium castaneum, we investigated phase 3 of Wright's shifting balance process. Using parent demes of high, intermediate, and low mean fitness, we experimentally modeled migration of varying amounts from demes of high mean fitness into demes of lower mean fitness (like phase 3) as well as the reciprocal (the opposite of phase 3). In natural populations, some migration among demes occurs independently of deme fitness. In this case, demes of high mean fitness are likely to receive migrants from demes of lower mean fitness; these effects might limit the effectiveness of phase 3 but have not been studied experimentally. We estimated the populational heritability of mean fitness by the regression of offspring deme means on the weighted parental means and found moderate levels of demic heritability one (0.641-0.690) and two (0.518-0.552) generations after migration. We discuss our findings in relation to the role of interdemic migration in "adaptive peak shifts" in metapopulations and the controversies over group selection and the units of inheritance.  相似文献   

17.
The genealogical process for a sample from a metapopulation, in which local populations are connected by migration and can undergo extinction and subsequent recolonization, is shown to have a relatively simple structure in the limit as the number of populations in the metapopulation approaches infinity. The result, which is an approximation to the ancestral behaviour of samples from a metapopulation with a large number of populations, is the same as that previously described for other metapopulation models, namely that the genealogical process is closely related to Kingman's unstructured coalescent. The present work considers a more general class of models that includes two kinds of extinction and recolonization, and the possibility that gamete production precedes extinction. In addition, following other recent work, this result for a metapopulation divided into many populations is shown to hold both for finite population sizes and in the usual diffusion limit, which assumes that population sizes are large. Examples illustrate when the usual diffusion limit is appropriate and when it is not. Some shortcomings and extensions of the model are considered, and the relevance of such models to understanding human history is discussed.  相似文献   

18.
F(st) in a Hierarchical Island Model   总被引:1,自引:0,他引:1       下载免费PDF全文
M. Slatkin  L. Voelm 《Genetics》1991,127(3):627-629
It is shown that in a hierarchical island model, in which demes within a neighborhood exchange migrants at a much higher rate than do demes in different neighborhoods, hierarchical F statistics introduced by S. Wright can indicate the extent of gene flow within and between neighborhoods. At equilibrium, the within-neighborhood inbreeding coefficient, FSN, is approximately 1/(1 + 4Nm1) where N is the deme size and m1 is the migration rate among demes in the same neighborhood. The between-neighborhood inbreeding coefficient, FNT, is approximately 1/(1 + 4Ndm2) where d is the number of demes in a neighborhood and m2 is the migration rate among demes in different neighborhoods.  相似文献   

19.
The potential of maintaining multilocus polymorphism by migration-selection balance is studied. A large population of diploid individuals is distributed over finitely many demes connected by migration. Generations are discrete and nonoverlapping, selection may vary across demes, and loci are multiallelic. It is shown that if migration and recombination are strong relative to selection, then with weak or no epistasis and intermediate dominance at every locus and in every deme, arbitrarily many alleles can be maintained at arbitrarily many loci at a stable equilibrium. If migration is weak relative to selection and recombination, then with weak or no epistasis and intermediate dominance at every locus and in every deme, as many alleles as there are demes can be maintained at arbitrarily many loci at equilibrium. In both cases open sets of such parameter combinations are constructed, thus the results are robust with respect to small, but arbitrary, perturbations in the parameters. For weak migration, the number of demes is, in fact, a generic upper bound to the number of alleles that can be maintained at any locus. Thus, several scenarios are identified under which multilocus polymorphism can be maintained by migration-selection balance when this is impossible in a panmictic population.   相似文献   

20.
The approximation of diploid migration by gametic dispersion is studied. The monoecious, diploid population is subdivided into panmictic colonies that exchange migrants. Generations are discrete and nonoverlapping; the analysis is restricted to a single locus in the absence of selection; every allele mutates to a new allele at the same rate u. Diploid-migration models without self-fertilization and with selfing at the “random” rate (equal to the reciprocal of the deme size in each deme) are investigated; in the gametic-dispersion models, selfing occurs at the random rate. It is shown for the unbounded stepping-stone model in one and two dimensions, the circular stepping-stone model, and the island model that the probabilitities of identity in state at equilibrium for diploid migration are close to those for gametic dispersion if the mutation rate is small or the deme size is large. Explicit error bounds are presented in all the above cases. It is also proved that if the number of demes is finite and the migration matrix is arbitrary but time independent and ergodic, then in the strong-migration approximation the equilibrium and the ultimate rate and pattern of convergence of both diploid-dispersion models are close to the corresponding gametic-dispersion formulae. For the strong-migration approximation at equilibrium, migration must dominate both mutation and random drift; for the convergence results, it suffices that migration dominate random drift. All the results apply to a dioecious population if the migration pattern and mutation rate are sex independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号