首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Prevention of the initiation of biofilm formation is the most important step for combating biofilm-associated pathogens, as the ability of pathogens to resist antibiotics is enhanced 10 to 1000 times once biofilms are formed. Genes essential to bacterial growth in the planktonic state are potential targets to treat biofilm-associated pathogens. However, the biofilm formation capability of strains with mutations in these essential genes must be evaluated, since the pathogen might form a biofilm before it is eliminated. In order to address this issue, this work proposes a systems-level approach to quantifying the biofilm formation capability of mutants to determine target genes that are essential for bacterial metabolism in the planktonic state but do not induce biofilm formation in their mutants. The changes of fluxes through the reactions associated with the genes positively related to biofilm formation are used as soft sensors in the flux balance analysis to quantify the trend of biofilm formation upon the mutation of an essential gene. The essential genes whose mutants are predicted not to induce biofilm formation are regarded as gene targets. The proposed approach was applied to identify target genes to treat Pseudomonas aeruginosa infections. It is interesting to find that most essential gene mutants exhibit high potential to induce the biofilm formation while most non-essential gene mutants do not. Critically, we identified four essential genes, lysC, cysH, adk, and galU, that constitute gene targets to treat P. aeruginosa. They have been suggested by existing experimental data as potential drug targets for their crucial role in the survival or virulence of P. aeruginosa. It is also interesting to find that P. aeruginosa tends to survive the essential-gene mutation treatment by mainly enhancing fluxes through 8 metabolic reactions that regulate acetate metabolism, arginine metabolism, and glutamate metabolism.  相似文献   

2.
3.
Analysis of bacteriophage T7 early RNAs and proteins on slab gels   总被引:395,自引:0,他引:395  
The RNAs and proteins specified by five early genes of bacteriophage T7 have been identified by electrophoresis on sodium dodecyl sulfate, polyacrylamide gels. Extracts of cells infected by different deletion strains and point mutants of T7 are analyzed on a slab gel system in which 25 samples can be run simultaneously and then dried for autoradiography. The high capacity of this system makes it possible to do many types of experiment that would be extremely tedious by other means.The five early genes are designated 0.3,0.7, 1, 1.1 and 1.3, in order from left to right on the T7 genetic map. The stop signal that prevents host RNA polymerase from transcribing into the late region of T7 DNA is located to the right of gene 1.3 (ligase). Most deletions that affect gene 1.3 also delete the stop signal, and some of them affect at least one late protein, the 1.7 protein. Several small, early RNAs can be resolved that are not affected by any of the deletions. These small RNAs could not come from between the five early genes or from the right end of the early region, and other work (Dunn &; Studier, 1973) indicates that at least some of them come from the region to the left of gene 0.3.Deletions have been found that enter either end of the gene 1 RNA or the right ends of the 0.3 or 1.1 RNAs without seeming to affect the proteins specified by these RNAs. Perhaps all of the early messenger RNAs of T7 have untranslated regions at both ends. Some deletions that enter the left end of the gene 1 RNA reduce the amount of gene 1 protein that is synthesized, presumably by interfering with initiation of protein synthesis.  相似文献   

4.
MST50, MST11, MST7, PMK1 and GAS1/GAS2 genes are the important components in the PMK1-MAPK signal transduction pathway in fungi. Mutants with deletion of these five genes of Magnaporthe oryzae, a pathogen of the rice blast, were constructed. A cDNA array containing 4108 unique genes of M. oryzae was developed and used to analyze the gene expression profiles of these mutants against the wild type to dissect the gene expression regulation networks responsible for conidiation and appressorium formation. With this approach, differentially regulated genes by these five components were identified. The vast majority of the regulated genes were mutant-specific, while only a small proportion were in common for all of the mutants, suggesting that each of these genes has its own regulon. Functional groups and expression patterns of the regulated genes showed that (1) gene members in the PMK1-MAPK pathway are associated with multiple signaling pathways; (2) the regulation of PMK1-mediated signaling pathways is very complex and likely involved in other signaling networks; (3) glucose metabolism and signals are required in mycelium development; and (4) appressorium formation likely shares the mechanisms responsible for sexual conjugation and meiosis, which is affected by carbohydrate metabolism.  相似文献   

5.
Physiological properties of bacteriophage T5 gene A1 mutants, whose growth is inhibited in λ lysogens, and designated T5 lr, have been studied. In the presence of λ gene rex, which is responsible for lr growth inhibition, gene A1 product is synthesized and functional. However, several physiological defects were observed: phage DNA synthesis is inhibited; late phage-induced proteins are synthesized in markedly decreased amounts after a delay of about 15 minutes; phage DNA transfer into the host goes beyond the first-step transfer fragment but, in most bacteria, is interrupted after penetration of about 55% of the genome. Relationships between these different defects are discussed.  相似文献   

6.
The classical genetic map of Arabidopsis includes more than 130 genes with an embryo-defective (emb) mutant phenotype. Many of these essential genes remain to be cloned. Hundreds of additional EMB genes have been cloned and catalogued (www.seedgenes.org) but not mapped. To facilitate EMB gene identification and assess the current level of saturation, we updated the classical map, compared the physical and genetic locations of mapped loci, and performed allelism tests between mapped (but not cloned) and cloned (but not mapped) emb mutants with similar chromosome locations. Two hundred pairwise combinations of genes located on chromosomes 1 and 5 were tested and more than 1100 total crosses were screened. Sixteen of 51 mapped emb mutants examined were found to be disrupted in a known EMB gene. Alleles of a wide range of published EMB genes (YDA, GLA1, TIL1, AtASP38, AtDEK1, EMB506, DG1, OEP80) were discovered. Two EMS mutants isolated 30 years ago, T-DNA mutants with complex insertion sites, and a mutant with an atypical, embryo-specific phenotype were resolved. The frequency of allelism encountered was consistent with past estimates of 500 to 1000 EMB loci. New EMB genes identified among mapped T-DNA insertion mutants included CHC1, which is required for chromatin remodeling, and SHS1/AtBT1, which encodes a plastidial nucleotide transporter similar to the maize Brittle1 protein required for normal endosperm development. Two classical genetic markers (PY, ALB1) were identified based on similar map locations of known genes required for thiamine (THIC) and chlorophyll (PDE166) biosynthesis. The alignment of genetic and physical maps presented here should facilitate the continued analysis of essential genes in Arabidopsis and further characterization of a broad spectrum of mutant phenotypes in a model plant.  相似文献   

7.
Phenotypes are determined by a complex series of physical (e.g. protein-protein) and functional (e.g. gene-gene or genetic) interactions (GI)1. While physical interactions can indicate which bacterial proteins are associated as complexes, they do not necessarily reveal pathway-level functional relationships1. GI screens, in which the growth of double mutants bearing two deleted or inactivated genes is measured and compared to the corresponding single mutants, can illuminate epistatic dependencies between loci and hence provide a means to query and discover novel functional relationships2. Large-scale GI maps have been reported for eukaryotic organisms like yeast3-7, but GI information remains sparse for prokaryotes8, which hinders the functional annotation of bacterial genomes. To this end, we and others have developed high-throughput quantitative bacterial GI screening methods9, 10.Here, we present the key steps required to perform quantitative E. coli Synthetic Genetic Array (eSGA) screening procedure on a genome-scale9, using natural bacterial conjugation and homologous recombination to systemically generate and measure the fitness of large numbers of double mutants in a colony array format. Briefly, a robot is used to transfer, through conjugation, chloramphenicol (Cm) - marked mutant alleles from engineered Hfr (High frequency of recombination) ''donor strains'' into an ordered array of kanamycin (Kan) - marked F- recipient strains. Typically, we use loss-of-function single mutants bearing non-essential gene deletions (e.g. the ''Keio'' collection11) and essential gene hypomorphic mutations (i.e. alleles conferring reduced protein expression, stability, or activity9, 12, 13) to query the functional associations of non-essential and essential genes, respectively. After conjugation and ensuing genetic exchange mediated by homologous recombination, the resulting double mutants are selected on solid medium containing both antibiotics. After outgrowth, the plates are digitally imaged and colony sizes are quantitatively scored using an in-house automated image processing system14. GIs are revealed when the growth rate of a double mutant is either significantly better or worse than expected9. Aggravating (or negative) GIs often result between loss-of-function mutations in pairs of genes from compensatory pathways that impinge on the same essential process2. Here, the loss of a single gene is buffered, such that either single mutant is viable. However, the loss of both pathways is deleterious and results in synthetic lethality or sickness (i.e. slow growth). Conversely, alleviating (or positive) interactions can occur between genes in the same pathway or protein complex2 as the deletion of either gene alone is often sufficient to perturb the normal function of the pathway or complex such that additional perturbations do not reduce activity, and hence growth, further. Overall, systematically identifying and analyzing GI networks can provide unbiased, global maps of the functional relationships between large numbers of genes, from which pathway-level information missed by other approaches can be inferred9.  相似文献   

8.
9.
The ΦCTX-based integration vector pYM101 harboring a tightly controlled modified phage T7 early gene promoter/LacIq repressor (T7/LacI) system was constructed for the generation of unmarked conditional mutants in Pseudomonas aeruginosa. Promoter activity of the T7/LacI system was demonstrated to be dependent on the presence of the inducer isopropyl -β-D-1-thiogalactopyranoside (IPTG), as evaluated by measuring β-galactosidase activity. In the absence of the inducer, the promoter was silent as its activity was lower than those of a promoter-less lacZ control. Unmarked conditional mutants of four predicted essential genes (lolCDE (PA2988-86), lpxC (PA4406), rho (PA5239), and def (PA0019)) were successfully constructed using this recombination system. In the absence of IPTG, the growth of all mutants was repressed; however, the addition of either 0.1 or 1 mM IPTG restored growth rates to levels nearly identical to wild-type cells. It was therefore demonstrated that the inducible integration vector pYM101 is suitable for the creation of unmarked conditional mutants of P. aeruginosa, and is particularly useful for examining the function of essential genes.  相似文献   

10.
Eleven temperature-sensitive mutations causing arrest of embryogenesis in Caenorhabditis elegans have been mapped. The mutations define nine genes (emb-1 to emb-9) on four chromosomes. The functions of six genes seem to be required exclusively for embryogenesis. Mutants in these genes have no other detectable phenotype at the permissive (16°C) or nonpermissive (25°C) temperature. The function of the other three genes is also required for postembryonic development. As shown by progeny tests for parental effects, for seven genes, maternal gene expression is necessary and sufficient for normal embryogenesis; for one gene, emb-2, either maternal or zygotic expression is sufficient; for one gene, emb-9, zygotic expression is necessary and sufficient. The high proportion of emb genes with maternal expression is consistent with the model of intracellular preprogramming of the egg of C. elegans (U. Deppe, E. Schierenberg, T. Cole, C. Krieg, D. Schmitt, B. Yoder, and G. von Ehrenstein, 1978; Proc. Nat. Acad. Sci. USA75, 376–380). Two developmental stages have been defined by temperature-shift experiments: (1) the normal execution stage indicating the time of execution of the normal event at the permissive temperature; (2) the defective execution stage indicating the time of the execution of an irreversible defect at the nonpermissive temperature. The classes of mutants defined by the progeny tests have corresponding execution stages, but the maternal necessary and sufficient class is subdivided into mutants executing during oogenesis or embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号