首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A genetic interaction (GI) is defined when the mutation of one gene modifies the phenotypic expression associated with the mutation of a second gene. Genome-wide efforts to map GIs in yeast revealed structural and functional properties of a GI network. This provided insights into the mechanisms underlying the robustness of yeast to genetic and environmental insults, and also into the link existing between genotype and phenotype. While a significant conservation of GIs and GI network structure has been reported between distant yeast species, such a conservation is not clear between unicellular and multicellular organisms. Structural and functional characterization of a GI network in these latter organisms is consequently of high interest. In this study, we present an in-depth characterization of ~1.5K GIs in the nematode Caenorhabditis elegans. We identify and characterize six distinct classes of GIs by examining a wide-range of structural and functional properties of genes and network, including co-expression, phenotypical manifestations, relationship with protein-protein interaction dense subnetworks (PDS) and pathways, molecular and biological functions, gene essentiality and pleiotropy. Our study shows that GI classes link genes within pathways and display distinctive properties, specifically towards PDS. It suggests a model in which pathways are composed of PDS-centric and PDS-independent GIs coordinating molecular machines through two specific classes of GIs involving pleiotropic and non-pleiotropic connectors. Our study provides the first in-depth characterization of a GI network within pathways of a multicellular organism. It also suggests a model to understand better how GIs control system robustness and evolution.  相似文献   

2.
3.

Background

Sequenced archaeal genomes contain a variety of bacterial and eukaryotic DNA repair gene homologs, but relatively little is known about how these microorganisms actually perform DNA repair. At least some archaea, including the extreme halophile Halobacterium sp. NRC-1, are able to repair ultraviolet light (UV) induced DNA damage in the absence of light-dependent photoreactivation but this 'dark' repair capacity remains largely uncharacterized. Halobacterium sp. NRC-1 possesses homologs of the bacterial uvrA, uvrB, and uvrC nucleotide excision repair genes as well as several eukaryotic repair genes and it has been thought that multiple DNA repair pathways may account for the high UV resistance and dark repair capacity of this model halophilic archaeon. We have carried out a functional analysis, measuring repair capability in uvrA, uvrB and uvrC deletion mutants.

Results

Deletion mutants lacking functional uvrA, uvrB or uvrC genes, including a uvrA uvrC double mutant, are hypersensitive to UV and are unable to remove cyclobutane pyrimidine dimers or 6–4 photoproducts from their DNA after irradiation with 150 J/m2 of 254 nm UV-C. The UV sensitivity of the uvr mutants is greatly attenuated following incubation under visible light, emphasizing that photoreactivation is highly efficient in this organism. Phylogenetic analysis of the Halobacterium uvr genes indicates a complex ancestry.

Conclusion

Our results demonstrate that homologs of the bacterial nucleotide excision repair genes uvrA, uvrB, and uvrC are required for the removal of UV damage in the absence of photoreactivating light in Halobacterium sp. NRC-1. Deletion of these genes renders cells hypersensitive to UV and abolishes their ability to remove cyclobutane pyrimidine dimers and 6–4 photoproducts in the absence of photoreactivating light. In spite of this inability to repair UV damaged DNA, uvrA, uvrB and uvrC deletion mutants are substantially less UV sensitive than excision repair mutants of E. coli or yeast. This may be due to efficient damage tolerance mechanisms such as recombinational lesion bypass, bypass DNA polymerase(s) and the existence of multiple genomes in Halobacterium. Phylogenetic analysis provides no clear evidence for lateral transfer of these genes from bacteria to archaea.  相似文献   

4.

Background

It has been noted that many bacterial virulence factor genes are located within genomic islands (GIs; clusters of genes in a prokaryotic genome of probable horizontal origin). However, such studies have been limited to single genera or isolated observations. We have performed the first large-scale analysis of multiple diverse pathogens to examine this association. We additionally identified genes found predominantly in pathogens, but not non-pathogens, across multiple genera using 631 complete bacterial genomes, and we identified common trends in virulence for genes in GIs. Furthermore, we examined the relationship between GIs and clustered regularly interspaced palindromic repeats (CRISPRs) proposed to confer resistance to phage.

Methodology/Principal Findings

We show quantitatively that GIs disproportionately contain more virulence factors than the rest of a given genome (p<1E-40 using three GI datasets) and that CRISPRs are also over-represented in GIs. Virulence factors in GIs and pathogen-associated virulence factors are enriched for proteins having more “offensive” functions, e.g. active invasion of the host, and are disproportionately components of type III/IV secretion systems or toxins. Numerous hypothetical pathogen-associated genes were identified, meriting further study.

Conclusions/Significance

This is the first systematic analysis across diverse genera indicating that virulence factors are disproportionately associated with GIs. “Offensive” virulence factors, as opposed to host-interaction factors, may more often be a recently acquired trait (on an evolutionary time scale detected by GI analysis). Newly identified pathogen-associated genes warrant further study. We discuss the implications of these results, which cement the significant role of GIs in the evolution of many pathogens.  相似文献   

5.
Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI) screens can provide insights into the biological role(s) of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems.  相似文献   

6.
7.
8.
Acquisition of genomic islands (GIs) plays a central role in the diversification and adaptation of bacteria. Some GIs can be mobilized in trans by integrative and conjugative elements (ICEs) or conjugative plasmids if the GIs carry specific transfer‐related sequences. However, the transfer mechanism of GIs lacking such elements remains largely unexplored. Here, we investigated the transmissibility of a GI found in a coral‐associated marine bacterium. This GI does not carry genes with transfer functions, but it carries four genes required for robust biofilm formation. Notably, this GI is inserted in the integration site for SXT/R391 ICEs. We demonstrated that acquisition of an SXT/R391 ICE results in either a tandem GI/ICE arrangement or the complete displacement of the GI. The GI displacement by the ICE greatly reduces biofilm formation. In contrast, the tandem integration of the ICE with the GI in cis allows the GI to hijack the transfer machinery of the ICE to excise, transfer and re‐integrate into a new host. Collectively, our findings reveal that the integration of an ICE into a GI integration site enables rapid genome dynamics and a new mechanism by which SXT/R391 ICEs can augment genome plasticity.  相似文献   

9.
We devised software tools to systematically investigate the contents and contexts of bacterial tRNA and tmRNA genes, which are known insertion hotspots for genomic islands (GIs). The strategy, based on MAUVE-facilitated multigenome comparisons, was used to examine 87 Escherichia coli MG1655 tRNA and tmRNA genes and their orthologues in E.coli EDL933, E.coli CFT073 and Shigella flexneri Sf301. Our approach identified 49 GIs occupying ~1.7 Mb that mapped to 18 tRNA genes, missing 2 but identifying a further 30 GIs as compared with Islander [Y. Mantri and K. P. Williams (2004), Nucleic Acids Res., 32, D55–D58]. All these GIs had many strain-specific CDS, anomalous GC contents and/or significant dinucleotide biases, consistent with foreign origins. Our analysis demonstrated marked conservation of sequences flanking both empty tRNA sites and tRNA-associated GIs across all four genomes. Remarkably, there were only 2 upstream and 5 downstream deletions adjacent to the 328 loci investigated. In silico PCR analysis based on conserved flanking regions was also used to interrogate hotspots in another eight completely or partially sequenced E.coli and Shigella genomes. The tools developed are ideal for the analysis of other bacterial species and will lead to in silico and experimental discovery of new genomic islands.  相似文献   

10.
11.
Burkholderia pseudomallei, as a saprophytic bacterium that can cause a severe sepsis disease named melioidosis, has preserved several extra genes in its genome for survival. The sequenced genome of the organism showed high diversity contributed mainly from genomic islands (GIs). Comparative genome hybridization (CGH) of 3 clinical and 2 environmental isolates, using whole genome microarrays based on B. pseudomallei K96243 genes, revealed a difference in the presence of genomic islands between clinical and environmental isolates. The largest GI, GI8, of B. pseudomallei was observed as a 2 sub-GI named GIs8.1 and 8.2 with distinguishable %GC content and unequal presence in the genome. GIs8.1, 8.2 and 15 were found to be more common in clinical isolates. A new GI, GI16c, was detected on chromosome 2. Presences of GIs8.1, 8.2, 15 and 16c were evaluated in 70 environmental and 64 clinical isolates using PCR assays. A combination of GIs8.1 and 16c (positivity of either GI) was detected in 70% of clinical isolates and 11.4% of environmental isolates (P<0.001). Using BALB/c mice model, no significant difference of time to mortality was observed between K96243 isolate and three isolates without GIs under evaluation (P>0.05). Some virulence genes located in the absent GIs and the difference of GIs seems to contribute less to bacterial virulence. The PCR detection of 2 GIs could be used as a cost effective and rapid tool to detect potentially virulent isolates that were contaminated in soil.  相似文献   

12.
Symbioses, the living together of two or more organisms, are widespread throughout all kingdoms of life. As two of the most ubiquitous organisms on earth, nematodes and bacteria form a wide array of symbiotic associations that range from beneficial to pathogenic 1-3. One such association is the mutually beneficial relationship between Xenorhabdus bacteria and Steinernema nematodes, which has emerged as a model system of symbiosis 4. Steinernema nematodes are entomopathogenic, using their bacterial symbiont to kill insects 5. For transmission between insect hosts, the bacteria colonize the intestine of the nematode''s infective juvenile stage 6-8. Recently, several other nematode species have been shown to utilize bacteria to kill insects 9-13, and investigations have begun examining the interactions between the nematodes and bacteria in these systems 9.We describe a method for visualization of a bacterial symbiont within or on a nematode host, taking advantage of the optical transparency of nematodes when viewed by microscopy. The bacteria are engineered to express a fluorescent protein, allowing their visualization by fluorescence microscopy. Many plasmids are available that carry genes encoding proteins that fluoresce at different wavelengths (i.e. green or red), and conjugation of plasmids from a donor Escherichia coli strain into a recipient bacterial symbiont is successful for a broad range of bacteria. The methods described were developed to investigate the association between Steinernema carpocapsae and Xenorhabdus nematophila14. Similar methods have been used to investigate other nematode-bacterium associations 9,15-18and the approach therefore is generally applicable.The method allows characterization of bacterial presence and localization within nematodes at different stages of development, providing insights into the nature of the association and the process of colonization 14,16,19. Microscopic analysis reveals both colonization frequency within a population and localization of bacteria to host tissues 14,16,19-21. This is an advantage over other methods of monitoring bacteria within nematode populations, such as sonication 22or grinding 23, which can provide average levels of colonization, but may not, for example, discriminate populations with a high frequency of low symbiont loads from populations with a low frequency of high symbiont loads. Discriminating the frequency and load of colonizing bacteria can be especially important when screening or characterizing bacterial mutants for colonization phenotypes 21,24. Indeed, fluorescence microscopy has been used in high throughput screening of bacterial mutants for defects in colonization 17,18, and is less laborious than other methods, including sonication 22,25-27and individual nematode dissection 28,29.  相似文献   

13.
The intensity-response (I-R) relations for four wind-sensitive giant interneurons (GIs 8-1, 9-1, 9-2 and 9-3) in the fourth-, sixth- and last-instar nymphs of the cricket, Gryllus bimaculatus, were investigated using a unidirectional air current stimulus in order to explore the functional changes of GIs during postembryonic development. Contrary to our expectations, the response properties of GIs in nymphs were largely different from those in adults. The response magnitude of GI 8-1 in an intact cricket decreased during development, i.e. the GI in younger insects showed a larger response magnitude. Although the response magnitudes of GIs 9-1 and 9-2 were almost identical during the nymphal period, a significant decrease was observed after the imaginal ecdysis. During the nymphal period, the response magnitude of GI 9-3 increased according to the developmental stage. However, it decreased significantly after the imaginal ecdysis. We also investigated the response magnitudes of the GIs in nymphs after unilateral cercal ablation. From the results of ablation experiments, the changes in excitatory and/or inhibitory connections between filiform hairs and each GI during postembryonic development were revealed.  相似文献   

14.
Our understanding of leptospiral pathogenesis, which remains poorly understood, depends on reliable genetic tools for functional analysis of genes in pathogenic strains. In this study, we report the first demonstration of conjugation between Escherichia coli and Leptospira spp. by using RP4 derivative conjugative plasmids. The DNA transfer described here was due to authentic conjugation, as shown by the requirement for cell-to-cell contact and the resistance of DNA transfers to the addition of DNase I. Transposition via conjugation of a plasmid delivering Himar1 yielded frequencies ranging from 1 × 10−6 to 8.5 × 10−8 transconjugants/recipient cell in the saprophyte L. biflexa and the pathogen L. interrogans, respectively. Analysis of mutants indicated that transposition occurs randomly, and at single sites in the genome of these strains, allowing the utilization of this system to generate libraries of transposon mutants.  相似文献   

15.
Adenine requiring mutants of Serratia marcescens SM-6-F'lac + have been found to grow well in minimal-glucose medium solely supplemented with cAMP. From one of these ade strains double mutants (called ade cpd) were isolated which could no longer utilize cAMP but which still grew on 5′AMP. Dialyzed cell extracts (soluble fraction) of the double mutants, assayed for cAMP phosphodiesterase, were unable to hydrolyze cAMP whereas cell extracts of the parental strains yielded 5′AMP at a rate of 1.6–2.0 μmoles min−1 mg−1 protein. The loss of the phosphodiesterase activity in S. marcescens cpd W1181 did not cause an accumulation of large amounts of cAMP as was found for the diesterase-negative mutant AB257pc-1 of Escherichia coli. The induced synthesis of β-galactosidase in mutant cpd W 1181 showed about the same sensitivity to transient and permanent catabolite (glucose) repression as the corresponding cpd + strain. Starting from S. marcescens cpd W1181 three independent double mutants (called cpd cya) were isolated which required exogenous cAMP for utilizing various carbohydrates as carbon source, for motility and for the formation of extracellular lipase and the red pigment prodigiosine. The intracellular concentration of cAMP in these mutants, grown in nutrient broth, was 40–60% of that of the parental strain which is about 4×10−4 M. However, the adenylate cyclase in cell extracts of the mutants W1237 and W1270 was like that of the corresponding cya + strain (about 2×10−2 μmoles min−1 mg−1 protein).  相似文献   

16.
Background

Genomic islands (GIs) are clusters of alien genes in some bacterial genomes, but not be seen in the genomes of other strains within the same genus. The detection of GIs is extremely important to the medical and environmental communities. Despite the discovery of the GI associated features, accurate detection of GIs is still far from satisfactory.

Results

In this paper, we combined multiple GI-associated features, and applied and compared various machine learning approaches to evaluate the classification accuracy of GIs datasets on three genera: Salmonella, Staphylococcus, Streptococcus, and their mixed dataset of all three genera. The experimental results have shown that, in general, the decision tree approach outperformed better than other machine learning methods according to five performance evaluation metrics. Using J48 decision trees as base classifiers, we further applied four ensemble algorithms, including adaBoost, bagging, multiboost and random forest, on the same datasets. We found that, overall, these ensemble classifiers could improve classification accuracy.

Conclusions

We conclude that decision trees based ensemble algorithms could accurately classify GIs and non-GIs, and recommend the use of these methods for the future GI data analysis. The software package for detecting GIs can be accessed at http://www.esu.edu/cpsc/che_lab/software/GIDetector/.

  相似文献   

17.
Horizontal gene transfer is a key step in the evolution of Enterobacteriaceae. By acquiring virulence determinants of foreign origin, commensals can evolve into pathogens. In Enterobacteriaceae, horizontal transfer of these virulence determinants is largely dependent on transfer by plasmids, phages, genomic islands (GIs) and genomic modules (GMs). The High Pathogenicity Island (HPI) is a GI encoding virulence genes that can be transferred between different Enterobacteriaceae. We investigated the HPI because it was present in an Enterobacter hormaechei outbreak strain (EHOS). Genome sequence analysis showed that the EHOS contained an integration site for mobile elements and harbored two GIs and three putative GMs, including a new variant of the HPI (HPI-ICEEh1). We demonstrate, for the first time, that combinatorial transfers of GIs and GMs between Enterobacter cloacae complex isolates must have occurred. Furthermore, the excision and circularization of several combinations of the GIs and GMs was demonstrated. Because of its flexibility, the multiple integration site of mobile DNA can be considered an integration hotspot (IHS) that increases the genomic plasticity of the bacterium. Multiple combinatorial transfers of diverse combinations of the HPI and other genomic elements among Enterobacteriaceae may accelerate the generation of new pathogenic strains.  相似文献   

18.

Background

Genomic islands (GIs) are clusters of alien genes in some bacterial genomes, but not be seen in the genomes of other strains within the same genus. The detection of GIs is extremely important to the medical and environmental communities. Despite the discovery of the GI associated features, accurate detection of GIs is still far from satisfactory.

Results

In this paper, we combined multiple GI-associated features, and applied and compared various machine learning approaches to evaluate the classification accuracy of GIs datasets on three genera: Salmonella, Staphylococcus, Streptococcus, and their mixed dataset of all three genera. The experimental results have shown that, in general, the decision tree approach outperformed better than other machine learning methods according to five performance evaluation metrics. Using J48 decision trees as base classifiers, we further applied four ensemble algorithms, including adaBoost, bagging, multiboost and random forest, on the same datasets. We found that, overall, these ensemble classifiers could improve classification accuracy.

Conclusions

We conclude that decision trees based ensemble algorithms could accurately classify GIs and non-GIs, and recommend the use of these methods for the future GI data analysis. The software package for detecting GIs can be accessed at http://www.esu.edu/cpsc/che_lab/software/GIDetector/.
  相似文献   

19.
When proliferating fission yeast cells are exposed to nitrogen starvation, they initiate conjugation and differentiate into ascospores. Cell cycle arrest in the G1-phase is one of the prerequisites for cell differentiation, because conjugation occurs only in the pre-Start G1-phase. The role of ste9+ in the cell cycle progression was investigated. Ste9 is a WD-repeat protein that is highly homologous to Hct1/Cdh1 and Fizzy-related. The ste9 mutants were sterile because they were defective in cell cycle arrest in the G1-phase upon starvation. Sterility was partially suppressed by the mutation in cig2 that encoded the major G1/S cyclin. Although cells lacking Ste9 function grow normally, the ste9 mutation was synthetically lethal with the wee1 mutation. In the double mutants of ste9 cdc10ts, cells arrested in G1-phase at the restrictive temperature, but the level of mitotic cyclin (Cdc13) did not decrease. In these cells, abortive mitosis occurred from the pre-Start G1-phase. Overexpression of Ste9 decreased the Cdc13 protein level and the H1-histone kinase activity. In these cells, mitosis was inhibited and an extra round of DNA replication occurred. Ste9 regulates G1 progression possibly by controlling the amount of the mitotic cyclin in the G1-phase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号