首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The sieve-element characters of 40 species from all families making up the monocotyledon order Zingiberales have been studied by transmission electron microscopy. While phloem-proteins are a typical component of all eight families, the Zingiberaceae are characterized by nondispersive protein bodies derived from nuclear crystals. The sieve-element plastids are of the form-P2cs, i.e. contain cuneate protein crystals (as typical of all monocotyledons) and starch grains, those of the family Musaceae have protein filaments in addition (form-P2cfs). The exclusiveness of the form-P2c(f)s plastids contributed to the homogeneity of the order and its distinctness among other monocotyledon taxa. When diameters of the sieve-element plastids from leaf phloem are compared, in the “banana group” the family averages of the Strelitziaceae and the Lowiaceae have, respectively, maximum and minimum values and are clearly different from those in the Musaceae, the family in which they have been included previously. In the “ginger group”, the family averages of the Zingiberaceae, Costaceae, and Marantaceae are close to the order average, with only Cannaceae having minimum values. A comparison of species averages, however, reduces the size differences between families: the value for Ravenala (Strelitziaceae) is close to those of the five Musaceae tested, and that of Globba (Zingiberaceae) even slightly lower than the species average of Canna.  相似文献   

2.
Summary During advanced stages of sieve-element differentiation inUlmus americana L., dispersal of the P-protein (slime) bodies results in formation of a peripheral network of strands consisting of aggregates of P-protein components having a striated, fibrillar appearance. The tonoplast is present throughout the period of P-protein body dispersal. Perforation of the sieve plates is initiated during early stages of P-protein body dispersal.Small P-protein bodies consist of tubular components, most of which measure about 180 Å in diameter. With increase in size of the P-protein bodies narrower components appear. At the time of initiation of P-protein body dispersal, most of the components comprising the bodies are of relatively narrow diameters (most 130–140 Å) and have a striated, fibrillar appearance. Both wide and narrow P-protein components are present throughout the period of sieve-element differentiation and in the mature cell as well, and a complete intergradation in size and appearance exists between the two extremes. Both extremes of P-protein component have a similar substructure: an electron-transparent lumen and an electronopaque wall composed of subunits, apparently in helical arrangement. The distribution of P protein in mature sieve elements was quite variable.The parietal layer of cytoplasm in matureUlmus sieve elements consists of plasmalemma, endoplasmic reticulum cisternae in two forms (as a complex network closely applied to the plasmalemma and in stacks along the wall), mitochondria, and plastids.  相似文献   

3.
The distribution of S-type and P-type plastids in the sieve elements of 30 species from 13 families of theConiferophytina andCycadophytina is recorded, of which 21 species were studied for the first time with respect to their sieve-element plastids. While starch storing S-type plastids are the most commonly occurring type throughout both taxa, all thePinaceae examined (11 species of 7 genera) contain P-type plastids characterized by a peripheral, ring-shaped bundle of protein filaments, an additional protein crystalloid, and several starch grains. Starch grains of sieve-element plastids in theConiferophytina andCycadophytina are commonly club-shaped. Taxonomic implications of these ultrastructural findings on sieve-element plastids are discussed.  相似文献   

4.
The vascular system of the stem of Stylobasium was investigated during its primary and secondary phases with both light and electron microscopic methods. It contains collateral bundles arranged in a ring, separated by rays which undergo regular cambial growth. The phloem consists of short sieve elements connected to sieve tubes by simple sieve plates, companion cells of the same length, and phloem parenchyma cells. During their autophagy-like differentiation and maturation, typical of all angiosperms, the sieve elements of Stylobasium have a peculiar feature, whereby they develop and retain form-Pfs plastids (containing protein filaments and starch). The sieve-element plastids of the two Stylobasium species, and of some 100 species belonging to taxa of which Stylobasium had been considered to be a possible member, have been studied by transmission electron microscopy. With the exception of a few species with form-Pcs plastids (containing a single small protein crystal in addition to starch), the great majority of taxa studied are characterized by S-type sieve-element plastids (containing starch only). The presence of form-Pfs plastids in Stylobasium supports its separation into the unigeneric Stylobasiaceae and the placement of this family close to other form-Pfs or form-Pcfs-containing taxa. While other characters would exclude an affiliation to the Magnolianae (form-Pfs plastids in Canella) or Caryophyllales (form-Pfs plastids in Microtea), an association with the form-Pcfs families Connaraceae and Mimosaceae is positively considered and corresponds to their frequent allocation close to the Rutales and Sapindales. Within the Rutales/Sapindales the sizes of sieve-element plastids (average diameter) range from very large (e.g. in the Julianaceae) to comparatively small (e.g. in Aceraceae) and are used to group the families. The sieve element characters of the Coriariaceae (tiny plastids with almost no starch, wide sieve plate pores, copious P-protein) suggest their removal from Rutales/Sapindales into the neighbourhood of the Cucurbitaceae.  相似文献   

5.
The sieve-element plastids of members of several genera in theBuxaceae (Buxus, Pachysandra andSarcococca) were found to be of the specific subtype PVI, which contains a central globular protein crystal.Simmondsia (Simmondsiaceae) andDaphniphyllum (Daphniphyllaceae), on the other hand, were found to contain S-type sieve-element plastids. The occurrence of the highly restricted PVI plastids in theBuxaceae mitigates against a close relationship between theBuxaceae andSimmondsia, Daphniphyllum andEuphorbiaceae. Exine sculpturing of theBuxaceae andSimmondsiaceae also shows no close similarities. Both of these EM characters are discussed in connection with other available data and with respect to earlier systematic treatment of these families.  相似文献   

6.
The sieve-element plastids of 69 species of theCaryophyllales were investigated by transmission electron microscopy. All contained the specific subtype-P3 plastids characterized by a peripheral ring of protein filaments. The presence or absence of an additional central protein crystal and their shape being either polygonal or globular as well as the average sizes of the sieve-element plastids are useful features in the characterization of some families.—Barbeuia contains sieve-element plastids that confirm its placement within thePhytolaccaceae. Lyallia differs fromHectorella by including small starch grains in their sieve-element plastids, which otherwise by their globular crystals negate a closer connection to theCaryophyllaceae. The lack of a central protein crystal in its form-P3fs plastids placesMicrotea best within theChenopodiaceae. Sarcobatus, a so far uncontested member of theChenopodiaceae, contains form-P3cf plastids, i.e., including a central crystal not found elsewhere in this family.Telephium andCorrigiola, shifted back and forth betweenMolluginaceae andCaryophyllaceae, have form-P3cf(s) plastids with a polygonal crystal which favor their placement within theCaryophyllaceae.  相似文献   

7.
Monocotyledons are distinguishable from dicotyledons by their subtype P2 sieve-element plastids containing cuneate protein crystals, a synapomorphic character uniformly present from basal groups through Lilioids to Commelinoids. The dicotyledon generaAsarum andSaruma (Aristolochiaceae-Asaroideae) are the only other taxa with cuneate crystals, but their sieveelement plastids include an additional large polygonal crystal, as is typical of many eumagnoliids. New investigations in Melanthiaceae s.l. revealed the same pattern (polygonal plus cuneate crystals) in the sieve-element plastids ofJaponolirion osense (Japonoliriaceae/Petrosaviaceae), ofHarperocallis flava, Pleea tenuifolia, andTofleldia (all: Tofieldiaceae). InNarthecium ossifragum a large crystal, present in addition to cuneate ones, usually breaks up into several small crystals, whereas inAletris glabra andLophiola americana (Nartheciaceae) and in all of the 15 species studied and belonging to Melanthiaceae s.str. only cuneate crystals are found. Highresolution TEM pictures reveal a crystal substructure that is densely packed in both cuneate and polygonal forms, but in Tofieldiaceae the polygonal crystals stain less densely, probably as a result of the slightly wider spacing of their subunits. The small crystals ofNarthecium are “loose”; that is, much more widely spaced. Such “loose” crystals are commonly found in sieve-element plastids of Velloziaceae, present there in addition to angular crystals, and together with cuneate crystals in a few Lilioids and many taxa of Poales (Commelinoids). Ontogenetic studies of the sieve elements ofSaruma, Aristolochia, and several monocotyledons have shown that in their plastids cuneate crystals develop very early and independent from a polygonal one present in some taxa. Therefore, a conceivable particulation of polygonal into cuneate crystals is excluded. Consequently, mutations of some monocotyledons that contain a lone, large, polygonal crystal in their sieve-element plastids are explained as the result of a complex genetic block. The total result of all studies in sieve-element plastids suggests thatJaponolirion and Tofieldiaceae are the most basal monocotyledons and that Aristolochiaceae are their dicotyledon sister group.  相似文献   

8.
Form-Pfs sieve-element plastids were found inTriplaris, Ruprechtia, andCoccoloba (Polygonaceae) while other genera of the family and those studied from the often associatedPlumbaginaceae contain S-type sieve-element plastids. The rareness of form-Pfs plastids among the angiosperms, their similarity to the peculiar form-P3fs plastids of theChenopodiineae, and the comparatively small plastid diameters measured for all forms present in theCaryophyllales, Polygonales, andPlumbaginales suggest close relationships between these taxa. The restriction inPolygonaceae of form-Pfs plastids to the closely allied tribesTriplareae andCoccolobeae is discussed with regard to both the intrafamilial and ordinal phylogeny, and also considering possible connections to the only magnoliidaean Pfs-taxonCanella. Dedicated to Univ.-Prof. DrF. Ehrendorfer on the occasion of his 70th birthday.  相似文献   

9.
Foliar fossils of Proteaceae are reviewed, and useful specimens for interpreting evolution, and past and present distributions and environments are discussed. There are no definite Cretaceous occurrences. However, there is evidence of extant lineages dating from the Paleocene onwards, including tribe Persoonieae of subfamily Persoonioideae and each of the four tribes of subfamily Grevilleoideae. High diversity and abundance characterizes the Australian fossil record, including sclerophyllous and xeromorphic forms, but there is little evidence of the prominent extant subfamily Proteoideae. New Zealand had a much higher diversity of Proteaceae than at present, including Oligo-Miocene species of open vegetation. The South American leaf fossil record is not extensive. However, the fossil records of Embothrieae and Orites are consistent with the distributions of their extant relatives in South America and Australia being the result of vicariance. Overall, there is a need for more research on placing Proteaceae leaf fossils in a phylogenetic context.  相似文献   

10.
Developing sieve elements of pennycress (Thlaspi arvense L.) were studied with the electron microscope. The maturation of sieve elements involved loss of ribosomes from cytoplasm; degeneration of nulcei; modification of endoplasmic reticulum (ER); loss of tonoplast; and disappearance of dictyosomes and dictyosomes vesicles, coated vesicles, microtubules, and microbodies. Such changes produce a mature, presumably conducting cell that contains no nucleus or central vacuole but which retains a thin layer of peripheral cytoplasm with plastids, mitochondria, and smooth ER. Some similar changes have been described in a variety of developing sieve elements of angiosperms, but coated vesicles and microbodies previously have not been followed through sieve-element maturation. Likewise, few developmental studies have been made of plant sieve elements that exhibit two types of P-protein, the tubular type and the granular P-protein body.  相似文献   

11.
The orderCaryophyllales (Centrospermae) was found to contain specific P-type sieve-element plastids which are characterized by protein inclusions composed of ring-shaped bundles of filaments and of central crystalloids. The sieve-element plastids of 14 families (140 species investigated) fit into this overall characterization, and more specific details are used to delimit the families and arrange them within the order.Phytolaccaceae, the basic family of the order display much diversity: the crystalloids inside their plastids are either globular (most genera) or polygonal (Stegnosperma), starch may also be present (Phytolacca).Nyctaginaceae, with starch inBougainvillea sieve-element plastids, can be derived directly fromPhytolacca. Globular crystalloids are present in most of the families, as inDidiereaceae, Cactaceae, Aizoaceae-Tetragoniaceae, Portulacaceae-Basellaceae-Halophytaceae-Hectorellaceae. Caryophyllaceae andLimeum ofMolluginaceae contain polygonal crystalloids (otherMolluginaceae with globular crystalloids). Crystalloids are entirely absent fromChenopodiaceae (incl.Dysphaniaceae) andAmaranthaceae. The probable relationships between these families are presented diagrammatically in Fig. 13. Bataceae, Gyrostemonaceae, Vivianiaceae, Theligonaceae, Polygonaceae, Plumbaginaceae, Fouquieriaceae, Frankeniaceae, andRhabdodendraceae—all at some time included into theCaryophyllales (Centrospermae) or doubtfully referred to them—develop S-type (or different P-type) sieve-element plastids. Their direct connection to theCaryophyllales therefore is excluded. Finally, evolutionary trends of theCaryophyllales are discussed.Presented in the Symposium Evolution of Centrospermous Families, during the XIIth International Botanical Congress, Leningrad, July 8, 1975.  相似文献   

12.
P-type sieve-element plastids were found in theGunneraceae, while S-type plastids are present in theHaloragaceae andHippuridaceae. The specific characters of the sieve-element plastids (e.g., their size and the morphology of their contents) are discussed in relation to other taxa of theRosidae containing P-type plastids and to the systematic position of theGunneraceae. Contributions to the Knowledge of P-Type Sieve-Element Plastids in Dicotyledons, III. — For other parts of this series see (I.:)Behnke (1982 b) and (II.:)Behnke (1985).  相似文献   

13.
The sieve-element plastids of 126 species of theArales were investigated by transmission electron microscopy. With the exception ofPistia (with S-type plastids) all contained the monocotyledon specific subtype-P2 plastids characterized by cuneate protein crystals. While the species studied from bothAcoraceae andLemnaceae have form-P2c plastids (i.e., with cuneate crystals only), those of theAraceae belong to either form P2c (14 species), P2cs (the great majority) or P2cfs (Monstera deliciosa, only, with form-P2cs plastids in the otherMonstera species studied). The form-P2cs plastids of theAraceae are grouped into different categories according to the quantity and quality of their protein and starch contents. The subfamilyLasioideae is redefined to comprise all aroid P2c-taxa and those P2cs-genera that contain only one or very few starch grains. Only little starch is also recorded in the sieve-element plastids ofGymnostachys (Gymnostachydoideae), with the other plastid data denying a close relationship toAcorus. While equal amounts of starch and protein are generally present in sieve-element plastids of the subfamiliesPothoideae, Monsteroideae, Colocasioideae, Philodendroideae, andAroideae, maximum starch content and only very few protein crystals are found in form-P2cs plastids ofCalla (Calloideae),Ariopsis (Aroideae), andRemusatia (Colocasioideae?). In the latter, both morphology and size of sieve-element plastids are close to those ofPistia.—In theAraceae the diameters of the sieve-element plastids exhibit a great size range, but are consistent within a species and within a defined part of the plant body. Comparative data are mainly available for stem and petiole sieve-element plastids.—The accumulated data are used to suggest an affiliation of the species to subfamilies and to discuss the phylogeny of theArales. Forms and sizes of their plastids support a separation of bothAcoraceae andLemnaceae from theAraceae. The presence of S-type plastids inPistia does not favour direct and close relationships to the form-P2c genusLemna.—The prevailing form-P2cs plastids might support proposals that place theArales (together with also form-P2cs plastid containingDioscoreales) in the neighbourhood of basal dicotyledons. BesidesAsarum andSaruma (Aristolochiaceae), with monocotyledonous form-P2c plastids,Pistia (with dicotyledonous S-type plastids) gives another example for a link between the two angiosperm classes.  相似文献   

14.
BACKGROUND AND AIMS: The subfamily Salicornioideae (Chenopodiaceae) are a taxonomically difficult group largely due to the lack of diagnostic characters available to delineate tribal- and generic-level boundaries; a consequence of their reduced floral and vegetative features. This study examined the variation in fruits and seeds across both tribes of the Salicornioideae to assess if characters support traditional taxonomic sections. METHODS: Light microscopy, environmental scanning electron microscopy and anatomical ultra-thin sectioning were employed to examine variation in fruits and seeds. Sixty-eight representatives across 14 of the 15 genera currently recognized within the tribes Halopeplideae and Salicornieae were examined to determine whether characters support current taxonomic groups. KEY RESULTS: Characters such as seed coat structure, embryo shape, seed orientation, the forms of seed storage proteins and carbohydrates show variation within the Salicornioideae and may be phylogenetically useful. The campylotropous ovule typical of the Chenopodiaceae generally results in a curved embryo; however, many Halosarcia and Sclerostegia species have straight embryos and in Salicornia and Sarcocornia the large peripheral embryo appears bent rather than curved. Seed coat ornamentation of Microcnemum and Arthrocnemum is distinct from other Salicornioideae as the elongated epidermal cells of the exotesta have convex walls. Histochemical stains of anatomical sections of cotyledon cells showed protein bodies were variable in shape, and starch grains were present in some species, namely Salicornia bigelovii, S. europaea and Allenrolfea occidentalis. CONCLUSIONS: While fruits and seeds were found to be variable within the subfamily, no synapomorphic characters support the tribe Halopeplideae as these genera have crustaceous seed coats, curved embryos and abundant perisperm; features characteristic of many of the tribe Salicornieae. The endemic Australian genera are closely related and few seed and fruit characters are diagnostic at the generic level. Nineteen characters identified as being potentially informative will be included in future phylogenetic analyses of the subfamily.  相似文献   

15.
Immature sieve elements of pennycress (Thlaspi arvense, Brassicaceae) were studied with the electron microscope in connection with studies on virus-infected plants. Immature sieve elements contained cytoplasm rich in organelles and other components: endoplasmic reticulum, dictyosomes and associated smooth and coated vesicles, mitochondria, plastids, ribosomes, microtubules, microfilaments, vacuoles, and nuclei that were sometimes lobed. Tubular P-protein (phloem protein) and one to three granular P-protein bodies also were present in the cytoplasm. Coated vesicles may be involved in formation of the granular P-protein body and in some aspect of cell wall development, for in the latter case, they were often seen united with the plasmalemma. The association of coated vesicles with the P-protein body is discussed with reference to proposed concepts of the origin and function of these vesicles.  相似文献   

16.
Subtype PIII sieve-element plastids, anthocyanins, spinulose, perforate-tectate pollen grains and the specific seed-coat sculpturing found in twoMacarthuria species (M. australis, M. neocambrica) consolidate their placement withinMolluginaceae. The unique form of the sieve-element plastids, i.e. with cubic crystals and starch grains (PIIIc″fs), finds its closest counter-part inLimeum. The multiple intertwinement of different genera of theMolluginaceae with many other centrospermous families led to a consideration of their more central position withinCaryophyllales.  相似文献   

17.
TEM investigation of sieve-element plastids in three species of Trithuria, the sole genus of the small aquatic family Hydatellaceae, show that P-type plastids are absent from this genus and only starch-accumulating (S-type) sieve-element plastids are present. This discovery is consistent with the recent transfer of Hydatellaceae from the highly derived monocot order Poales (grasses and their allies) to the early-divergent angiosperm order Nymphaeales (waterlilies) based on molecular phylogenetic data. Species of Poales consistently possess P2-subtype plastids, in common with other monocots, but only S-type plastids are present in Nymphaeales. The results confirm that Hydatellaceae do not belong in monocots. Optimisation of the two major types of sieve-element plastid onto a recent phylogeny of early-divergent angiosperms confirms that S-type is the primitive form and indicates that P-type sieve-element plastids have evolved more than once in angiosperms.  相似文献   

18.
Heinz-Dietmar Behnke 《Planta》1973,110(4):321-328
Summary Plastids have been identified in the sieve elements and/or companion cells of 14 monocotyledon species. In contrast to earlier reports, plastids are present in the sieve elements of Smilax and the companion cells of Tradescantia. The development and fine structure of the sieve-element plastids in Smilax do not differ from the type found in all of the 230 angiosperm species we have studied so far contain prominent plastids. The companion cells are easily identified by their specialized plasmatic connections with the sieve elements. The leucoplasts in the companion cells of Tradescantia are identical with those reported for many angiosperms.  相似文献   

19.
Proteaceae are most diverse in southern Africa and Australia, especially in the south-western portions of these regions. Most genera have some species in flower at all times of the year, although generally there is a preponderance of species that flower between late winter and early summer. The one genus that is an exception to this generalization is Banksia, which either has approximately the same percentage of species in flower at various times of the year (southwestern Australia) or peaks in autumn (southeastern Australia). Within particular communities, opportunities for hybridization among congeneric species are minimized by staggered flowering times, different pollen vectors and/or various incompatibility mechanisms. Birds, mammals and arthropods have been identified as visitors to the inflorescences of many Proteaceae. The most common avian visitors to the majority of genera in Australia are honeyeaters, although lorikeets, silvereyes and approximately 40 other species sometimes may be important. Sugarbirds and sunbirds are seen most frequently at inflorescences of Protea, Leucospermum and Mimetes in southern Africa, although they rarely visit other genera. In most cases, avian visitors forage in a manner that permits the acquisition and transfer of pollen. Limited evidence supports the hypothesis that birds are selective in their choice of inflorescences, responding to morphological and/or colour changes and usually visiting those inflorescences that offer the greatest nectar rewards. Arthropods may be equally selective, although it is possible that only the larger moths, bees and beetles are important pollinators, even for those plant species that rely entirely on arthropods for pollen transfer. Mammals are pollen vectors for some Proteaceae, especially those that have geoflorous and/or cryptic inflorescences. In Australia, small marsupials may be the most important mammalian pollinators, although rodents fill this niche in at least some southern African habitats. All but two genera of Proteaceae are hermaphroditic and protandrous, the exceptions being the dioecious southern African genera Aulax and Leucadendron. For hermaphroditic species, the timing of visits by animals to inflorescences is such that they not only acquire pollen from freshly opened flowers but also brush against pollen presenters and stigmas of others that have lost self-pollen and become receptive. Birds and insects (and probably mammals) generally forage in such a way as to facilitate both outcrossing and selfing. Some species are self-compatible, although many require outcrossing if viable seed is to be formed. Regardless of which animals are the major pollen vectors, fruit set is low relative to the number of flowers available, especially in Australian habitats. Functional andromonoecy of the majority of flowers is advanced as the major cause of poor fruit set. The pollination biology and breeding systems of Australian and southern African Proteaceae resemble one another in many ways, partly because of their common ancestry, but also due to convergence. Divergence is less obvious, apart from the dichotomy between dioecious and hermaphroditic genera, and differences in the levels of seed set for Australian and African species. Future studies should concentrate on identifying the most important pollinators for various Proteaceae, the manner in which their visits are integrated with floral development and factors responsible for limiting fruit set.  相似文献   

20.
H.-D. Behnke  A. Schulz 《Planta》1980,150(5):357-365
The wound phloem bridges which have developed six days after interrupting an internodal vascular bundle contain wound sieve-elements, companion cells, and phloem parenchyma cells. An analysis of the meristematic activity responding to the wounding clearly demonstrates that three consecutive divisions are prerequisite to the formation of phloem mother-cells. Companion cells are obligatory sister cells of wound sieve-elements, connected to the latter by specific plasmatic strands and provided with a dense protoplast. Six days after wounding most of the wound sieve-elements are still at a nucleate state of development, but already have characteristic P-protein bodies and plastids containing sieve-element starch. Their cytoplasmic differentiation corresponds to the changes recorded during maturation of ordinary sieve elements. Sieve-plate pores penetrate through preexisting parenchyma cell walls, only, and develop from primary pitfield-plasmodesmata. Wound sieve-elements do not connect to preexisting bundle sieve-elements, they open a new tier of young sieve elements produced by cambial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号