首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The role of peroxisomes in the oxidative injury induced by the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in leaves of pea (Pisum sativum L.) plants was studied. Applications of (2,4-D) on leaves or to root substrate increased the superoxide radical production in leaf peroxisomes. Foliar application also increased H2O2 contents in leaf peroxisomes. Reactive oxygen species (ROS) overproduction was accompanied by oxidative stress, as shown by the changes in lipid peroxidation, protein carbonyls, total and protein thiols, and by the up-regulation of the activities of superoxide dismutase, ascorbate peroxidase, glutathione reductase, catalase, glucose 6-phosphate dehydrogenase and NADP+-dependent isocitrate dehydrogenase. Foliar or root 2,4-D applications also induced senescence symptoms in pea leaf peroxisomes, as shown by the decrease of protein content and glycolate oxidase and hydroxypyruvate reductase activities, and by the increase of endopeptidase, xanthine oxidase, isocitrate lyase and acyl-CoA oxidase activities as well as of 3-ketoacyl-CoA thiolase and thiol-protease protein contents. 2,4-D did not induce proliferation of pea leaf peroxisomes but induced senescence-like morphological changes in these organelles. Results suggest that peroxisomes might contribute to 2,4-D toxicity in pea leaves by overproducing cell-damaging ROS and by participating actively in 2,4-D-induced leaf senescence.  相似文献   

2.
The onset of leaf senescence is controlled by leaf age and ethylene can promote leaf senescence within a specific age window. We exploited the interaction between leaf age and ethylene and isolated mutants with altered leaf senescence that are named as onset of leaf death (old) mutants. Early leaf senescence mutants representing three genetic loci were selected and their senescence syndromes were characterised using phenotypical, physiological and molecular markers. old1 is represented by three recessive alleles and displayed earlier senescence both in air and upon ethylene exposure. The etiolated old1 seedlings exhibited a hypersensitive triple response. old2 is a dominant trait and the mutant plants were indistinguishable from the wild-type when grown in air but showed an earlier senescence syndrome upon ethylene treatment. old3 is a semi-dominant trait and its earlier onset of senescence is independent of ethylene treatment. Analyses of the chlorophyll degradation, ion leakage and SAG expression showed that leaf senescence was advanced in ethylene-treated old2 plants and in both air-grown and ethylene-treated old1 and old3 plants. Epistatic analysis indicated that OLD1 might act downstream of OLD2 and upstream of OLD3 and mediate the interaction between leaf age and ethylene. A genetic model was proposed that links the three OLD genes and ethylene into a regulatory pathway controlling the onset of leaf senescence.  相似文献   

3.
Lateral expansion of the third internodes of pea epicotyls was evoked by treatment with either 2,4-dichlorophenoxyacetic acid (2,4-D) or ethylene gas. During growth, 2,4-D enhanced and ethylene inhibited the deposition of xyloglucan and cellulose in the cell wall, with the result that the wall framework (ghost) from ethylene-treated swollen tissue was much thinner than that from 2,4-D-treated. The level of activity of xyloglucan synthase, alkali-insoluble β-glucan synthases, and endo-1,4-β-glucanases were all enhanced by 2,4-D treatment but not by ethylene. Both 2,4-D and ethylene treatments led to increased osmotic potential in the swelling tissues. Accordingly, swelling after 2,4-D treatment was accompanied by xyloglucan degradation, concomitant with substantial net synthesis, but swollen tissue as a result of ethylene treatment was characterized by walls whose integrity was weakened by relatively low levels of newly deposited polysaccharides rather than by the degradation.  相似文献   

4.
The chemical 2,4-dichlorophenoxyacetic acid (2,4-D) regulates plant growth and development and mimics auxins in exhibiting a biphasic mode of action. Although gene regulation in response to the natural auxin indole acetic acid (IAA) has been examined, the molecular mode of action of 2,4-D is poorly understood. Data from biochemical studies, (Grossmann (2000) Mode of action of auxin herbicides: a new ending to a long, drawn out story. Trends Plant Sci 5:506–508) proposed that at high concentrations, auxins and auxinic herbicides induced the plant hormones ethylene and abscisic acid (ABA), leading to inhibited plant growth and senescence. Further, in a recent gene expression study (Raghavan et al. (2005) Effect of herbicidal application of 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct Integr Genomics 5:4–17), we have confirmed that at high concentrations, 2,4-D induced the expression of the gene NCED1, which encodes 9-cis-epoxycarotenoid dioxygenase, a key regulatory enzyme of ABA biosynthesis. To understand the concentration-dependent mode of action of 2,4-D, we further examined the regulation of whole genome of Arabidopsis in response to a range of 2,4-D concentrations from 0.001 to 1.0 mM, using the ATH1-121501 Arabidopsis whole genome microarray developed by Affymetrix. Results of this study indicated that 2,4-D induced the expression of auxin-response genes (IAA1, IAA13, IAA19) at both auxinic and herbicidal levels of application, whereas the TIR1 and ASK1 genes, which are associated with ubiquitin-mediated auxin signalling, were down-regulated in response to low concentrations of 2,4-D application. It was also observed that in response to low concentrations of 2,4-D, ethylene biosynthesis was induced, as suggested by the up-regulation of genes encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. Although genes involved in ethylene biosynthesis were not regulated in response to 0.1 and 1.0 mM 2,4-D, ethylene signalling was induced as indicated by the down-regulation of CTR1 and ERS, both of which play a key role in the ethylene signalling pathway. In response to 1.0 mM 2,4-D, both ABA biosynthesis and signalling were induced, in contrast to the response to lower concentrations of 2,4-D where ABA biosynthesis was suppressed. We present a comprehensive model indicating a molecular mode of action for 2,4-D in Arabidopsis and the effects of this growth regulator on the auxin, ethylene and abscisic acid pathways. Experiment station: Plant Biotechnology Centre, Primary Industries Research Victoria, Department of Primary Industries, La Trobe University, Bundoora, Victoria 3086, and the Victorian Microarray Technology Consortium (VMTC).  相似文献   

5.
Cytokinins: new apoptotic inducers in plants   总被引:19,自引:0,他引:19  
High concentrations of cytokinins block cell proliferation and induce programmed cell death (PCD) in both carrot ( Daucus carota L.) and Arabidopsis thaliana (L.) Heynh. cell cultures [13 and 27 micro M N(6)-benzylaminopurine (BAP), respectively]. In the present work, cell death was scored by Evan's blue staining and was also demonstrated to be programmed by various parameters, including chromatin condensation, oligonucleosomal DNA degradation (laddering), and release of cytochrome c from mitochondria. In carrot cells, this induction takes approximately 24 h, with proliferating cells being more sensitive than quiescent ones. Two hormones, namely abscisic acid and 2,4-dichlorophenoxyacetic acid (2,4-D), protect cells against the cytokinin-induced death. PCD is not merely a consequence of the inability of the culture to proliferate, since high levels of 2,4-D block carrot cell proliferation without promoting PCD. Increased ethylene production was also observed in BAP-treated cultures, although this increase was not responsible for PCD because inhibitors of ethylene synthesis and action did not block PCD in BAP-treated cultures. Programmed cell death in the form of DNA laddering was also seen in plants treated with cytokinins. This process was accompanied by accelerated senescence in the form of leaf yellowing.  相似文献   

6.
The role of uronic acid oxidase in abscission was studied in explants of citrus ( Citrus sinensis L. Osbeck; var. Shamouti) leaves and fruits. In leaf explants, activity of uronic acid oxidase prior to onset of abscission and the rate of abscission were markedly accelerated by ethylene and delayed by 2,4-dichlorophenoxyacetie acid. Similar results were obtained for uronic acid oxidase activity in the exocellular fraction of young fruit explants. In mature fruit explants, treated with ethylene, an immediate increase in activity was evidenty in the non-active shoot/peduncle abscission zone, whereas in the calyx abscission zone the rise in activity occurred after a prolonged exposure to ethylene, when most of the fruits had already abscised. Whenever ethylene enhanced uronic acid oxidase activity, 2,4-dichlorophenoxyacetic acid delayed it. A gradient of decreasing activity or uronic acid oxidase was recorded from both sides of the abscission zone in leaves and fruits toward the separation line, where activity was the lowest as compared with the activity found in adjacent tissues. It is suggested that uronic acid oxidase is involved in senescence and cell wall degradation. However, it is yet questionable whether this enzyme is directly related to the control mechanism of abscission.  相似文献   

7.
Ethylene as a regulator of senescence in tobacco leaf discs   总被引:24,自引:18,他引:6       下载免费PDF全文
The regulatory role of ethylene in leaf senescence was studied with excised tobacco leaf discs which were allowed to senesce in darkness. Exogenous ethylene, applied during the first 24 hours of senescence, enhanced chlorophyll loss without accelerating the climacteric-like pattern of rise in both ethylene and CO2, which occurred in the advanced stage of leaf senescence. Rates of both ethylene and CO2 evolution increased in the ethylene-treated leaf discs, especially during the first 3 days of senescence. The rhizobitoxine analog, aminoethoxy vinyl glycine, markedly inhibited ethylene production and reduced respiration and chlorophyll loss. Pretreatment of leaf discs with Ag+ or enrichment of the atmosphere with 5 to 10% CO2 reduced chlorophyll loss, reduced rate of respiration, and delayed the climacteric-like rise in both ethylene and respiration. Ag+ was much more effective than CO2 in retarding leaf senescence. Despite their senescence-retarding effect, Ag+ and CO2, which are known to block ethylene action, stimulated ethylene production by the leaf discs during the first 3 days of the senescing period; Ag+ was more effective than CO2. The results suggest that although ethylene production decreases prior to the climacteric-like rise during the later stages of senescence, endogenous ethylene plays a considerable role throughout the senescence process, presumably by interacting with other hormones participating in leaf senescence.  相似文献   

8.
Role of ethylene in the senescence of detached rice leaves   总被引:6,自引:2,他引:4       下载免费PDF全文
Kao CH  Yang SF 《Plant physiology》1983,73(4):881-885
The role of ethylene in the senescence of detached rice leaves in relation to their changes in 1-aminocyclopropane-1-carboxylic acid (ACC) content and ethylene production was studied. In freshly excised rice leaf segments, ACC level and ethylene production rates were very low. Following incubation, the rates of ethylene production increased and reached a maximum in 12 h, and subsequently declined. The rise of ethylene production was associated with a 20- to 30-fold increase in ACC level.

Ethylene seems to be involved in the regulation of the senescence of detached rice leaves. This conclusion was based on the observations that (a) maximum ethylene production preceded chlorophyll degradation, (b) ACC application promoted chlorophyll degradation, (c) inhibitors of ethylene production and ethylene action retarded chlorophyll degradation, and (d) various treatments such as light, cycloheximide, α,α-dipyridyl, Ni2+, and cold temperature, which retarded chlorophyll degradation, also inhibited ethylene production.

Abscisic acid promoted senescence but significantly decreased ethylene production, whereas benzyladenine retarded senescence but promoted ethylene production. This is interpreted to indicate that abscisic acid treatment increased the tissue sensitivity to ethylene, whereas benzyladenine treatment decreased it.

  相似文献   

9.
Samples of chernozem soil were enriched with vanillic acid, protocatechuic acid glucose, a mixture of glucose and (NH4)2SO4 (C∶N = 5∶1), ethanol and 2,4-dichlorophenoxyacetic acid (2,4-D). After a 6-d (with 2,4-D 35-d) incubation during which primary oxidation of the introduced substrates occurred, the soil was supplied with a solution of 2-14C-2,4-D (50ppm; 6.7kBq) and production of14CO2 (product of microbial degradation of 2,4-D) was measured. Previously enriched samples exhibited a higher degradation rate; both the lag phase and doubling time of mineralization activity in the exponential phase of the process were markedly higher. This reflected an overall proliferation of bacteria and the increased relative proportion of bacterial strains capable of mineralizing 2,4-D in enriched samples. The stimulation of 2,4-D degradation may involve specific adaptation and selection mechanisms (as in the case with samples previously enriched with 2,4-D or its structural analogues—aromatic monomers, ethanol) as well as nonspecific mechanisms. The extent of mineralization of 2,4-D was not affected by soil pretreatment, about 1/3 of introduced radioactive carbon being invariably transformed to14CO2.  相似文献   

10.
Exogenous application of the lysophospholipid, lyso-phosphatidylethanolamine (LPE) is purported to delay leaf senescence in plants. However, lyso-phospholipids are well known to possess detergent-like activity and application of LPE to plant tissues might be expected to rather elicit a wound-like response and enhance senescence progression. Since phosphatidic acid (PA) accumulation and leaf cell death are a consequence of wounding, PA- and hormone-induced senescence was studied in leaf discs from Philodendron cordatum (Vell.) Kunth plants in the presence or absence of egg-derived 18:0-LPE and senescence progression quantified by monitoring both lipid peroxidation (as the change in malondialdehyde concentration), and by measuring retention of total chlorophyll (Chla+b) and carotenoids (Cc+x). Only abscisic acid (ABA) stimulated lipid peroxidation whereas ABA, 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor to ethylene (ETH), and 16:0–18:2-PA stimulated loss of chloroplast pigments. Results using primary alcohols as attenuators of the endogenous PA signal confirmed a role for PA as an intermediate in both ABA- and ETH-mediated senescence progression. Exogenous 18:0-LPE did not appear to influence senescence progression and was unable to reverse hormone-induced senescence progression. However, when supplied together with 16:0–18:2-PA at 1:1 (mol:mol), activity of phosphatidylglycerol (PG) hydrolase, chlorophyllase (E.C. 3.1.1.14), and progression of leaf senescence were negated. This apparent anti-senescence activity of exogenous 18:0-LPE was associated with induction of the pathogenesis-related protein, extracellular acid invertase (Ac INV, E.C. 3.2.1.26) suggesting that 18:0-LPE like 16:0–18:2-PA functions as an elicitor.  相似文献   

11.
Auxin-deprived, mannitol-supplemented, suspension-cultured pear (Pyrus communis L. Passe Crassane) fruit cells produce large quantities (20-40 nanoliters ethylene per 106 cells per hour) of ethylene in response to auxins, CuCl2 or 1-amino-cyclopropane-1-carboxylic acid (ACC). Maximum rates of production are achieved about 12 hours after the addition of optimal amounts of indoleacetic acid (IAA), naphthalene acetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), 4 to 5 hours after the addition of CuCl2 and 1 to 2 hours after the addition of ACC. Supraoptimal concentrations of IAA result in a lag phase followed by a normal response. High concentrations of NAA and 2,4-D result in an early (4-5 hours) stress response and injury.

Continuous protein and RNA synthesis are essential for elaboration of the full IAA response; only protein synthesis is necessary for the response to CuCl2 and ACC. Based on polysomal states and rates of amino acid incorporation, CuCl2 partially inhibits protein synthesis while nonetheless stimulating ethylene production. In general, ethylene production by the pear cells resembles that of other plant systems. Some differences may reflect the sensitivity of the cells and are discussed. The relatively high levels of ethylene produced and the experimental convenience of the cultured cells should make them especially suitable for further investigations of ethylene production and physiology.

  相似文献   

12.
Oxidative stress and senescence have been shown to participate in the toxicity mechanism of auxin herbicides in the leaves and roots of sensitive plants. However, their role in stem toxicity has not been studied yet. In this work, we report the effect of foliar or root applications of the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on the parameters of oxidative stress and senescence of stems of pea (Pisum sativum L.) plants. Contrary to their effect on the pea leaves, in the stems 2,4-D applications did not cause oxidative stress, as shown by the parameters of lipid peroxidation, protein carbonyls, and total and protein thiols. Moreover, they inhibited the superoxide radical (O2.−)-producing xanthine oxidase (XOD) activity and stimulated the antioxidant activities of catalase (CAT), guaiacol peroxidase (GPOX), ascorbate peroxidase (APX), glutathione reductase (GR), glutathione S-transferase (GST) and Krebs cycle NAD+-isocitrate dehydrogenase (IDH). Applications of 2,4-D also did not induce senescence in the pea stems, as shown by the increase of proteins, the lack of stimulation of proteolytic activity, and the inhibition of senescence-related isocitrate lyase (ICL) activity. However, they stimulated the H2O2-producing acyl-CoA oxidase (ACOX) activity of fatty acid beta oxidation. Results suggest that oxidative stress and senescence are not involved in the mechanism of toxicity of 2,4-D in the stems of pea plants, and that these phenomena are not whole-plant toxicity mechanisms for auxin herbicides in susceptible plants. Results also suggest that the effect of 2,4-D on the oxidative metabolism of pea plants might be organ-specific.  相似文献   

13.
Microcuttings of easy-to-root dwarf rose cv. Starina, showing early symptoms of leaf senescence and shoot-tip necrosis in rooting stage, were chosen for the study. The effects of inhibitors of ethylene biosynthesis (AOA, AIB) and action (AgNO3), and Ca2+ and Mg2+ were studied in relation to rooting, leaf senescence and shoot-tip necrosis. The effects of these substances were examined with respect to IAA presence in a medium, which stimulated leaf yellowing and shoot-tip necrosis. AOA strongly inhibited rooting of microcuttings, but did not affect ethylene biosynthesis. AIB at 250 mg·l−1 and AgNO3 2.5 mg·l−1 in the presence of IAA did not affect rooting but effectively prevented leaf senescence. Ca2+ alone or combined with Mg2+ at raised concentration, or an ethylene action inhibitor Ag+, reduced shoot-tip necrosis in microcuttings treated with IAA. Addition of Ag+ to IAA medium drastically increased ethylene production by the shoots. Interaction between endogenous levels of auxin, ethylene and calcium in relation to rooting, shoot-tip necrosis and leaf senescence was discussed. Ethylene could enhance tissue sensitivity to auxin. Moreover, the tissue of rose shoots is very sensitive in the in vitro condition on standard medium because of the calcium deficiency. Thus, the raised Ca/Mg level counteracted shoot-tip necrosis through enhancing cell membrane and wall resistance to ethylene and IAA.  相似文献   

14.
Chinese flowering cabbage is one of the main leafy vegetables produced in China. They have a rapid leaf yellowing due to chlorophyll degradation after harvest that limits their marketing. In the present study, leaf senescence of the cabbages was manipulated by ethylene and 6-benzyl aminopurine (6-BA) treatment to investigate the correlation of leaf senescence and chlorophyll degradation related to gene expression/activities in the darkness. The patterns of several senescence associated markers, including a typical marker, the expression of senescence-associated gene SAG12, demonstrated that ethylene accelerated leaf senescence of the cabbages, while 6-BA retarded this progress. Similar to the trends of BrSAG12 gene expression, strong activation in the expression of three chlorophyll degradation related genes, pheophytinase (BrPPH), pheophorbide a oxygenase (BrPAO) and red chlorophyll catabolite reductase (BrRCCR), was detected in ethylene treated and control leaves during the incubation, while no evident increase was recorded in 6-BA treated leaves. The overall dynamics of Mg-dechelatase activities in all treatments displayed increasing trends during the senescence process, and a delayed increase in the activities was observed for 6-BA treated leaves. However, chlorophyllase activity as well as the expression of BrChlase1 and BrChlase2 decreased with the incubation in all treatments. Taken together, the expression of BrPPH, BrPAO and BrRCCR, and the activity of Mg-dechelatase was closely associated with the chlorophyll degradation during the leaf senescence process in harvested Chinese flowering cabbages under dark conditions.  相似文献   

15.
Diclofop-methyl (DM) sprayed onto 6–8-week-old plants of leafy spurge ( Euphorbia esula L.) caused senescence and abscission of older leaves, while the young leaves and apex remained attached. The phytotoxicity of DM was reversed by the antioxidant, α -tocopherol (vitamin E), in leafy spurge and DM-susceptible oat ( Avena sativa L. cv. Gary). DM and 2,4-dichlorophenoxyacetic acid (2,4-D) increased ethylene evolution in mature leaves of leafy spurge. Vitamin E reduced the DM-induced ethylene by ampproximately 50%, but had no effect on the 2,4-D-induced ethylene. DM did not increase ethylene in DM-resistant pea or tobacco, but 2,4-D induced a 3-fold increase in ethylene evolution over controls in DM-resistant tobacco. 2,4-D amppears to act at a site different from that of DM in the pathway of ethylene formation. Ethylene evolution increased in DM-treated susceptible biotypes of annual ryegrass ( Lolium rigidum L.) and wild oat ( Avena fatua L.), but not in resistant biotypes of these species. DM reduced root and shoot formation and dry weight in hypocotyl segments of etiolated leafy spurge seedlings grown in vitro. Organogenesis and dry weights were increased by the combination of DM+antioxidants. Vitamin E was a more effective antioxidant than ascorbic acid. These results sumpport the hypothesis that DM induces oxidative stress in susceptible plant tissues and that antioxidants reduce the damaging action of the phytotoxic free radicals.  相似文献   

16.
Phospholipids of plant membranes isolated from homogenates of dark-grown hypocotyls of soybean (Glycine max L.) undergo rapid and specific degradative changes. The degradation of phosphatidylinositol (PI) in such membranes is enhanced in the presence of the synthetic auxin, 2,4-dichlorophenoxyacetic acid (2,4-D), measured as the hydrolysis of PI or by an enhancement of [3H]inositol incorporation into membrane-associated PI stimulated by Mn2+, but not dependent upon added CTP, Mg2+, or diglyceride. The response is rapid and enhanced by auxin throughout the physiological range of growth-promoting concentrations (optimum at about 7 X 10(-7) M). The growth-inactive 2,4-D analogue, 2,3-dichlorophenoxyacetic acid (2,3-D), is without effect. These findings suggest a cell-free response of isolated membranes to the hormone mediated by a definable enzymatic reaction.  相似文献   

17.
Mineralization potentials, rates, and kinetics of the three phenoxy acid (PA) herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), and 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP), were investigated and compared in 15 soils collected from five continents. The mineralization patterns were fitted by zero/linear or exponential growth forms of the three-half-order models and by logarithmic (log), first-order, or zero-order kinetic models. Prior and subsequent to the mineralization event, tfdA genes were quantified using real-time PCR to estimate the genetic potential for degrading PA in the soils. In 25 of the 45 mineralization scenarios, ~60% mineralization was observed within 118 days. Elevated concentrations of tfdA in the range 1 × 10(5) to 5 × 10(7) gene copies g(-1) of soil were observed in soils where mineralization could be described by using growth-linked kinetic models. A clear trend was observed that the mineralization rates of the three PAs occurred in the order 2,4-D > MCPA > MCPP, and a correlation was observed between rapid mineralization and soils exposed to PA previously. Finally, for 2,4-D mineralization, all seven mineralization patterns which were best fitted by the exponential model yielded a higher tfdA gene potential after mineralization had occurred than the three mineralization patterns best fitted by the Lin model.  相似文献   

18.
Changes in fatty acid, phospholipid and galactolipid contents during cellular and organ differentiation in Aegle marmelos have been described. Decrease in phosphatidylinositol content and presence of 3-trans-hexadecenoic acid in phosphatidylglycerol were related to greening and shoot buds differentiation. The galactolipids level, the monogalactosyl diglyceride/digalactosyl diglyceride ratio and the linolenic acid level (mainly in monogalactosyl diglyceride) increased with the degree of differentiation, indicating the possible biogenesis of functional chloroplasts.Abbreviations 2,4-D 2,4 dichlorophenoxyacetic acid - BA benzylaminopurine - DW dry weight - FW fresh weight - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - PG phosphatidylglycerol - PS phosphatidyl serine - MGDG monogalactosyl diglyceride - DGDG digalactosyl diglyceride - 16:0 palmatic acid - 18:0 stearic acid - 18:1 oleic acid - 18:2 linoleic acid - 18:3 linolenic acid - trans-16:1 3-trans-hexadecenoic acid  相似文献   

19.
Molecular imprinted polymers (MIPs) binding with phenoxyacetic acid (PA) as a dummy template molecule were synthesized via thermal initiation in aqueous medium. The retention behaviors of benzoic acid (BA), PA, 2-methyl-4-chlorophenoxyacetic acid (MCPA), 4-chlorophenoxyacetic acid (4-CPA), and 2,4-dichlorophenoxyacetic acid (2,4-D) on this MIP column indicate that this material can selectively retain phenoxyacetic herbicides. To investigate these recognition mechanisms, the interactions between the functional monomer 4-vinylpyridine (4-VP) and PA or 2,4-D were investigated by computational modeling. (1)H NMR spectroscopy of 2,4-D titrated by 4-VP was recorded. The chemical shift of the 2,4-D acidic proton (12.15-14.32ppm) shows the existence of the ion-pair interaction. This kind of polymers could be useful as stationary phases to extract 2,4-D, 4-CPA or MCPA and avoid leakage of a trace amount of target analyte remaining in the MIPs.  相似文献   

20.
Swelling of the hypocotyl base induced by 2,4-D in seedlings of marrow was much reduced if GA3 was also present in the incubation medium. At appropriate concentrations kinetin also counteracted this 2,4-D effect, although at higher concentrations appeared to be ineffective. GA3 was also able to overcome the inhibitory effects of 2,4-D on extension growth in the hypocotyl but kinetin was much less effective in this case. None of the treatments employed was able to alleviate the inhibition of radicle extension induced by 2,4-D.Ethephon induced similar responses in the seedlings to those resulting from 2,4-D treatment, while treatment with a mixture of 2,4-D and CoCl2 removed many of these growth abnormalities. These observations are interpreted as indicating that 2,4-D operates at least partly by stimulating the production of ethylene in the tissues. 2,4-D strongly inhibited the accumulation of endogenous gibberellin during the period of seedling development examined, but enhanced cytokinin levels during the later stages of the same period. The possibility of interactions at the biosynthetic level between gibberellins, cytokinins and ethylene and their involvement in the regulation of seedling development are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号