首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Seed inoculation with Rhizobium and soil inoculation withGlomus fasciculatum increased nodulation, nitrogen and phosphorus concentration in plants and yield of chickpea (Cicer arietinum) var. BG 212 in pots containing unsterilized soil especially with 50kgP2O5 ha−1 in the form of superphosphate. Inoculation with Rhizobium orG. fasciculatum separately or in combination significantly increased the N2 fixed in straw and grain than uninoculated controls as determined by15N atom percent excess of plants grown in soil amended with labelled ammonium sulphate (15NH4)2SO4) at the rate of 20kg N ha−1. These increases were most pronounced when P was applied at 50kgP2O5 ha−1.  相似文献   

2.
A field study was carried out near Zürich (Switzerland) to determine the yield of symbiotically fixed nitrogen (15N dilution) from white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L) and from red clover (Trifolium pratense L.) grown with Italian ryegrass (Lolium multiflorum Lam.). A zero N fertilizer treatment was compared to a 30 kg N/ha per cut regime (90 to 150 kg ha−1 annually). The annual yield of clover N derived from symbiosis averaged 131 kg ha−1 (49 to 227 kg) without N fertilization and 83 kg ha−1 (21 to 173 kg) with 30 kg of fertilizer N ha−1 per cut in the seeding year. Values for the first production year were 308 kg ha−1 (268 to 373 kg) without N fertilization and 232 kg ha−1 (165 to 305 kg) with 30 kg fertilizer N ha−1 per cut. The variation between years was associated mainly with the proportion of clover in the mixtures. Apparent clover-to-grass transfer of fixed N contributed up to 52 kg N ha−1 per year (17 kg N ha−1 on average) to the N yield of the mixtures. Percentage N derived from symbiosis averaged 75% for white and 86% for red clover. These percentages were affected only slightly by supplemental nitrogen, but declined markedly during late summer for white clover. It is concluded that the annual yield of symbiotically fixed N from clover/grass mixtures can be very high, provided that the proportion of clover in the mixtures exceeds 50% of total dry mass yield.  相似文献   

3.
The nitrogen fixing bacterial endophytes Gluconacetobacter diazotrophicus and Herbaspirillum spp. have been proposed to benefit sugarcane (Saccaharum spp. hybrids) growth. Variable populations of these endophytes exist depending upon ontogenic and climatic variations as well. This study investigates the effect of variable chemical nitrogen application in soil on the population of endophytic diazotrophs, acetylene reduction ability of excised roots, plant N-nutrient use efficiency and probable interactions among different parameters in eight commercial sugarcane varieties of subtropical India. Recovery efficiency (RE), agronomic efficiency (AE), partial factor productivity (PFP) and physiologic efficiency (PE) indicators were used for accounting N-nutrient use efficiency. The population of G. diazotrophicus was more at N75 compared to N0 and N150, whereas Herbaspirillum population increased from N0 to N150. ARA was positively correlated with Gluconacetobacter population in rhizosphere and root, whereas it had poor correlation with Herbaspirillum population. Positive correlation of RE and AE with ARA of roots, Gluconacetobacter and Herbaspirillum populations in roots and stems indicate their positive contribution in total nitrogen uptake by the plant per kg of N applied. Average PFP was 808.9 at N75 compared to 408.7 at N150 indicating that N was utilized efficiently at low N input status in sugarcane. Strong positive correlations of AE75 (agronomic efficiency from 75 kg N ha−1 to 150 kg N ha−1) with N-uptake (r 2 = 0.615), cane yield (r 2 = 0.758) and PFP (r 2 = 0.758) and other parameters compared to AE (agronomic efficiency from 0 kg N ha−1 to 75 kg N ha−1 or 150 kg N ha−1) correlations with N-uptake (r 2 = 0.111), cane yield (r 2 = 0.368) and PFP (r 2 = 0.190) indicated that the AE of sugarcane was strongly directed towards producing more cane yield per unit of N fertilizer once the sugarcane plant has established using initial dose of nitrogen and thus AE75 seems to be a more appropriate indicator for accounting N-nutrient use efficiency in sugarcane.  相似文献   

4.
Cultivating dinitrogen-fixing legume trees with crops in agroforestry is a relatively common N management practice in the Neotropics. The objective of this study was to assess the N2 fixation potential of three important Neotropical agroforestry tree species, Erythrina poeppigiana, Erythrina fusca, and Inga edulis, under semi-controlled field conditions. The study was conducted in the humid tropical climate of the Caribbean coastal plain of Costa Rica. In 2002, seedlings of I. edulis and Vochysia guatemalensis were planted in one-meter-deep open-ended plastic cylinders buried in soil within hedgerows of the same species. Overall tree spacing was 1 × 4 m to simulate a typical alley-cropping design. The 15N was applied as (NH4)2SO4 at 10% 15N atom excess 15 days after planting at the rate of 20 kg [N] ha−1. In 2003, seedlings of E. poeppigiana, E. fusca, and V. guatemalensis were planted in the same field using the existing cylinders. The 15N application was repeated at the rate of 20 kg [N] ha−1 15 days after planting and 10 kg [N] ha−1 was added three months after planting. Trees were harvested 9 months after planting in both years. The 15N content of leaves, branches, stems, and roots was determined by mass spectrometry. The percentage of atmospheric N fixed out of total N (%Nf) was calculated based on 15N atom excess in leaves or total biomass. The difference between the two calculation methods was insignificant for all species. Sixty percent of I. edulis trees fixed N2; %Nf was 57% for the N2-fixing trees. Biomass production and N yield were similar in N2-fixing and non-N2-fixing I. edulis. No obvious cause was found for why not all I. edulis trees fixed N2. All E. poeppigiana and E. fusca trees fixed N2; %Nf was ca. 59% and 64%, respectively. These data were extrapolated to typical agroforestry systems using published data on N recycling by the studied species. Inga edulis may recycle ca. 100 kg ha−1 a−1 of N fixed from atmosphere to soil if only 60% of trees fix N2, E. poeppigiana 60–160 kg ha−1 a−1, and E. fusca ca. 80 kg ha−1 a−1.  相似文献   

5.
A field experiment was conducted at the Bangladesh Rice Research Institute, Joydebpur, Dhaka during the late wet season. Basal application of P at both 5 and 10 kg ha−1 significantly increased total biomass production and nitrogen fixation byAzolla pinnata R. Brown (local strain). Addition of both 5 and 10 kg P ha−1 in equal splits at inoculation and at six day intervals thereafter during growth periods of 12, 24 and 36 days increased biomass production and nitrogen fixation by Azolla over that attained with the basal application. Biomass and nitrogen fixation using a split application of 5 kg P ha−1 exceeded that attained with basal application of 10 kg P ha−1 and split application of 10 kg P ha−1 resulted in 0.58, 11.2, and 18.3 t ha−1 more biomass, and 0.47, 18.9, and 18.3 more kg fixed N ha−1 at 12, 24 and 36 days, respectively, than the same amount applied as a basal application. Analyses indicated that the critical level of dry weight P in Azolla for sustained growth was in the range of 0.15–0.17%. Compared with the control, where no P was added, and additional 30 and 36 kg N ha−1 were fixed after 24 and 36 days, respectively, when P was provided at 10 kg ha−1 using a split application. A separate field study showed that flooded rice plants received P from incorporated Azolla with about 28% of the P present in the supplied Azolla being incorporated into the rice plants.  相似文献   

6.
Summary Inoculation of water fernAzolla pinnata R. Brown (Bangkok isolate) at the rate of 500kg fresh weight ha−1 in rice fields at weekly intervals after planting in addition to 30 kg N ha−1 as urea showed a decrease in its growth and N2-fixation with delay in application. Use of Azolla up to 3 weeks after planting (WAP) during wet and 4 WAP during dry season produced significantly more grain yield than 30 kg N ha−1, whereas its application upto one WAP produced more grain yield than 60 kg N ha−1. Grain yield with Azolla applied at the time of planting was similar to that of 60 kg N treatment during the wet season. Higher grain yields in zero and one WAP Azolla treatments resulted due to increase in both number of panicles m−2 and number of grains/panicle while the subsequent Azolla inoculations increased grain yield mainly by producing more number of grains/panicle. Dry matter and total N yields at maturity of rice crop were more with Azolla application upto 3 WAP during wet and 2 WAP during dry season while the reduction in sterility (%) was observed upto one WAP over 30 kg N ha−1 during both seasons. Number of tillers m−2 and dry matter production at maximum tillering and flowering were more than 30 kg N ha−1 with the use of Azolla upto one WAP. Increased grain N yield was observed with the use of Azolla upto 4 WAP during two seasons whereas straw N yield increased upto one WAP during wet and 2 WAP during dry season.  相似文献   

7.
Seasonal patterns of growth and nitrogen fixation in field-grown pea   总被引:2,自引:1,他引:1  
The seasonal patterns of growth and symbiotic N2 fixation under field conditions were studied by growth analysis and use of15N-labelled fertilizer in a determinate pea cultivar (Pisum sativum L.) grown for harvest at the dry seed stage. The patterns of fertilizer N-uptake were almost identical in pea and barley (the non-fixing reference crop), but more fertilizer-N was recovered in barley than in pea. The estimated rate of N2 fixation in pea gradually increased during the pre-flowering and flowering growth stages and reached a maximum of 10 kg N fixed per ha per day nine to ten weeks after seedling emergence. This was the time of early pod-development (flat pod growth stage) and also the time for maximum crop growth rate and maximum green leaf area index. A steep drop in N2 fixation rate occurred during the following week. This drop was simultaneous with lodging of the crop, pod-filling (round pod growth stage) and the initiation of mobilization of nitrogen from vegetative organs. The application of fertilizer-N inhibited the rate of N2 fixation only during that period of growth, when the main part of fertilizer-N was taken up and shortly after. Total accumulation of fixed nitrogen was estimated to be 244, 238 and 213 kg N ha−1 in pea supplied with nil, 25 or 50 kg NO 3 −N ha−1, respectively. About one-fourth of total N2 fixation was carried out during preflowering, one fourth during the two weeks of flowering and the remainder during post-flowering. About 55% of the amount of N present in pods at maturity was estimated to be derived from mobilization of N from vegetative organs. “Starter” N (25 or 50 kg NO 3 −N ha−1) did not significantly influence either dry matter and nitrogen accumulation or the development of leaf area. Neither root length and root biomass determined 8 weeks after seedling emergence nor the yield of seed dry matter and nitrogen at maturity were influenced by fertilizer application.  相似文献   

8.
Little is known about whether the high N losses from inorganic N fertilizers applied to lowland rice (Oryza sativa L.) are affected by the combined use of either legume green manure or residue with N fertilizers. Field experiments were conducted in 1986 and 1987 on an Andaqueptic Haplaquoll in the Philippines to determine the effect of cowpea [Vigna unguiculata (L.) Walp.] cropping systems before rice on the fate and use efficiency of15N-labeled, urea and neem cake (Azadirachta indica Juss.) coated urea (NCU) applied to the subsequent transplanted lowland rice crop. The pre-rice cropping systems were fallow, cowpea incorporated at the flowering stage as a green manure, and cowpea grown to maturity with subsequent incorporation of residue remaining after grain and pod removal. The incorporated green manure contained 70 and 67 kg N ha−1 in 1986 and 1987, respectively. The incorporated residue contained 54 and 49 kg N ha−1 in 1986 and 1987, respectively. The unrecovered15N in the15N balances for 58 kg N ha−1 applied as urea or NCU ranged from 23 to 34% but was not affected by pre-rice cropping system. The partial pressure of ammoniapNH3, and floodwater (nitrate + nitrite)-N following application of 29 kg N ha−1 as urea or NCU to 0.05-m-deep floodwater at 14 days after transplanting was not affected by pre-rice cropping system. In plots not fertilized with urea or NCU, green manure contributed an extra 12 and 26 kg N ha−1, to mature rice plants in 1986 and 1987, respectively. The corresponding contributions from residue were 19 and 23 kg N ha−1, respectively. Coating urea with 0.2g neem cake per g urea had no effect on loss of urea-N in either year; however, it significantly increased grain yield (0.4 Mg ha−1) and total plant N (11 kg ha−1) in 1987 but not in 1986.  相似文献   

9.
Summary A field experiment was performed to assess the effects of Rhizobium inoculation and nitrogen fertilizer (100 kg N ha–1) on four cultivars of Phaseolus beans; Carioca, Negro Argel, Venezuela 350 and Rio Tibagi. In the inoculated treatment 2.5 kg N ha–1 of15N labelled fertilizer was added in order to apply the isotope dilution technique to quantify the contribution of N2 fixation to the nutrition of these cultivars.Nodulation of all cultivars in the uninoculated treatments was poor, but the cultivars Carioca and Negro Argel were well nodulated when inoculated. Even when inoculated, nodulation of the cultivars Venezuela 350 and Rio Tibagi was poor and these cultivars showed little response to inoculation in terms of nitrogen accumulation or grain yield. The estimates of the contribution of N2 fixation estimated using the isotope dilution technique, for the Carioca and Negro Argel cultivars, amounted to 31.7 and 18.4 kg N ha–1 respectively. These two cultivars produced 991 and 883 kg ha–1 of grain, respectively, when inoculated and 663 and 620 kg ha–1 with the addition of 100 kg N ha–1 of N fertilizer. The response to nitrogen was particularly poor due to high leaching losses in the very sandy soil at the experimental site.The Venezuela 350 and Rio Tibagi cultivars only responded to N fertilizer and not to inoculation with Rhizobium which stresses the great importance of selecting plant cultivars for nitrogen fixation in the field.  相似文献   

10.
Annual and seasonal rates of net nitrogen mineralization were determined for 19 sites in the spruce-fir forests of the Southern Appalachian Mountains. These sites included high and low elevation stands of red spruce (Picea rubens Sarg.) and Fraser fir (Abies fraseri (Pursh.) Poir.) on east and west exposures on Whitetop Mountain, Virginia; Mt. Mitchell, North Carolina; and Clingman's Dome in the Great Smoky Mountains National Park. Mineralization rates were determined using in situ soil incubations in PVC tubes with ion exchange resin bags placed in the bottom of the tubes to collect leachate. Throughfall was collected in resin bags placed in the top of the tubes. Average initial NH4-N + NO3-N ranged from 0.6 to 4.8 kg N/ha across all plots, and average mineralization rates ranged from 26 to 180 kg-N ha−1 yr−1. Throughfall ranged from 18 to 32 kg-N ha−1 yr−1 with NH4-N accounting for about two-thirds of the throughfall N across all sites. Throughfall and mineralization rates were not related to elevation or exposure. The high rates of N mineralization and relatively high nitrate concentrations indicate that leaching losses of nitrogen and associated cations could be substantial. Requests for offprints  相似文献   

11.
This study reports the effect of salinity and inoculation on growth, ion uptake and nitrogen fixation byVigna radiata. A soil ECe level of 7.5 dS m−1 was quite detrimental causing about 60% decline in dry matter and grain yield of mungbean plants whereas a soil ECe level of 10.0 dS m−1 was almost toxic. In contrast most of the studied strains of Rhizobium were salt tolerant. Nevertheless, nodulation, nitrogen fixation and total nitrogen concentration in the plant was drastically affected at high salt concentration. A noticeable decline in acetylene reduction activity occurred when salinity level increased to 7.5 dS m−1.  相似文献   

12.
Common bean (Phaseolus vulgaris L.) is able to fix 20–60 kg N ha–1 under tropical environments in Brazil, but these amounts are inadequate to meet the N requirement for economically attractive seed yields. When the plant is supplemented with N fertilizer, N2 fixation by Rhizobium can be suppressed even at low rates of N. Using the 15N enriched method, two field experiments were conducted to compare the effect of foliar and soil applications of N-urea on N2 fixation traits and seed yield. All treatments received a similar fertilization including 10 kg N ha–1 at sowing. Increasing rates of N (10, 30 and 50 kg N ha–1) were applied for both methods. Foliar application significantly enhanced nodulation, N2 fixation (acetylene reduction activity) and yield at low N level (10 kg N ha–1). Foliar nitrogen was less suppressive to nodulation, even at higher N levels, than soil N treatments. In the site where established Rhizobium was in low numbers, inoculation contributed substantially to increased N2 fixation traits and yield. Both foliar and soil methods inhibited nodulation at high N rates and did not significantly increase bean yield, when comparing low (10 kg N ha–1) and high (50 kg N ha–1) rates applied after emergence. In both experiments, up to 30 kg N ha–1 of biologically fixed N2 were obtained when low rates of N were applied onto the leaves.  相似文献   

13.
Summary Previous investigations indicated some forage grass roots in Texas are heavily colonized with N2-fixing bacteria. The most numerous N2-fixing bacteria were in the genera Klebsiella and Enterobacter. In the present investigation inoculation experiments were conducted using 18 isolates of these bacteria to determine if a N2-fixing association could be established between the bacteria and the grassesCynodon dactylon andPanicum coloratum. Plants were grown in soil for approximately 5 months in a greenhouse and were measured periodically for dry matter, nitrogen accumulation, and acetylene reduction activity. Results of the investigation indicated that 25% of the plant-soil systems were active in acetylene reduction and the activity was high enough to indicate agronomically significant quantities of N2 were being fixed (>8kg N ha−1). However, plant systems extrapolated to fix>8 kg N ha−1 contained less nitrogen and accumulated less dry matter than plants less active in acetylene reduction. Inocula could not be re-isolated from healthy grass roots indicating that the N2-fixing activity may have not have been closely assiciated with plant roots. Future research is needed to determine factors limiting colonization of grass roots.  相似文献   

14.
Although wheat (Triticum aestivum L.) is the dominant crop of the semi-arid plains of Canada and the western United States, lentil (Lens culinaris Medik.) has become an important alternative crop. Sources and seasonal accumulation of N must be understood in order to identify parameters that can lead to increased N2-fixing activity and yield. Inoculated lentil was grown in a sandy-loam soil at an irrigated site in Saskatchewan, Canada. Wheat was used as the reference crop to estimate N2 fixation by the A-value approach. Lentil and wheat received 10 and 100 kg N ha−1 of ammonium nitrate, respectively. Crops were harvested six times during the growing season and plant components analyzed. During the first 71 days after planting the wheat had a higher daily dry matter and N accumulation compared to lentil. However, during the latter part of the growing season, daily dry matter and N accumulation were greater for lentil. The maximum total N accumulation for lentil at maturity was 149 kg ha−1. In contrast, wheat had a maximum N accumulation of 98 kg ha−1 in the Feekes 11.1 stage, or 86 days after planting. The maximum daily rates of N accumulation were 3.82 kg N ha−1 day−1 for lentil and 2.21 kg N ha−1 day−1 for wheat. The percentage of N derived from N2 fixation (% Ndfa) ranged from 0 at the first harvest to 92 % at final harvest. Generative plant components had higher values for % Ndfa than the vegetative components which indicates that N in the reproductive plant parts was derived largely from current N2 fixation and lentil continued to fix N until the end of the pod fill stage. At final harvest, lentil had derived 129 kg N ha−1 from N2 fixation with maximum N2-fixing activity (4.4 kg N ha−1 day−1) occurring during the early stages of pod fill. Higher maximum rates of N2-fixing activity than net N accumulation (3.82 kg N ha−1 day−1) may have been caused by N losses like volatilization. In addition, lentil provided a net N contribution to the soil of 59 kg ha−1 following the removal of the grain.  相似文献   

15.
Summary The seasonal patterns of nodulation, acetylene reduction, nitrogen uptake and nitrogen fixation were studies for 11 pigeonpea cultivars belonging to different maturity groups grown on an Alfisol at ICRISAT Center, Patancheru, India. In all cultivars the nodule number and mass increased to a maximum around 60–80 days after sowing and then declined. The nodule number and mass of medium- and late-maturing cultivars was greater than that of early-maturing cultivars. The nitrogenase activity per plant increased to 60 days after sowing and declined thereafter, with little activity at 100 days when the crop was flowering. At later stages of plant growth nodules formed down to 90 cm below the soil surface but those at greater depth appeared less active than those near the surface. All the 11 cultivars continued to accumulate dry matter until 140 days, with most biomass production by the late-maturing cultivars (up to 11 t ha−1) and least by the early-maturing determinate cultivars (4 t ha−1). Total nitrogen uptake ranged from 69 to 134 kg ha−1. Nitrogen fixation by pigeonpea was estimated as the difference in total nitrogen uptake between pigeonpea and sorghum and could amount to 69 kg N ha−1 per season, or half the total nitrogen uptake. Fixation by pigeonpea increased with crop duration, but there were differences within each maturity group. The limitations of the methods used for estimating N2 fixation by pigeonpea are discussed. Submitted as J.A. No. 552 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).  相似文献   

16.
The objectives of this study were to clarify the influences of nitrogen (N) load on the growth and photosynthetic responses of Quercus serrata seedlings to O3 and to obtain basic data for evaluating the critical levels of O3 for protecting Q. serrata forests in Japan. The effects of O3 and/or N load on growth and photosynthetic activity of Q. serrata seedlings were investigated during the two growing seasons. Two-year-old seedlings were assigned to 12 experimental treatments, which were comprised of the combination of four gas treatments (charcoal-filtered air and three levels of O3 at 1.0, 1.5 and 2.0 times ambient concentration) and three N treatments (0, 20 and 50 kg ha−1 year−1). During the second growing season, no significant interactive effects of O3 and N load on the growth and net photosynthetic rate of the seedlings were detected. Threrfore, we concluded that N supply to the soil at ≤50 kg ha−1 year−1 does not significantly influence the growth and photosynthetic responses of Q. serrata seedlings to O3. Based on the O3 exposure-response relationships for the whole-plant growth of the seedlings, the critical level of O3 for Q. serrata was estimated to be approximately 36 nmol mol−1 as the average 15-h O3 concentration during the one growing season.  相似文献   

17.
The effects on growth, quality and N uptake by turfgrass (Cynodon dactylon L.) during sod production of four fertiliser types applied at three application rates (100, 200 or 300 kg N ha−1 per ‘crop’) under two irrigation treatments (70% and 140% daily replacement of pan evaporation) were investigated. The fertiliser types were: water-soluble (predominately NH4NO3), control-release, pelletised poultry manure, and pelletised biosolids; and the experiment was conducted on a sandy soil in a Mediterranean-type climate. Plots were established from rhizomes, with the turfgrass harvested as sod every 16–28 weeks depending upon the time of the year. Four crops were produced during the study. Applying water-soluble and control-release fertilisers doubled shoot growth and improved turfgrass greenness by up to 10% in comparison with plots receiving pelletised poultry manure and pelletised biosolids. Nitrogen uptake into the shoots after four crops (averaged across irrigation treatments and N rates) was 497 kg N ha−1 for the water-soluble fertiliser, 402 kg N ha−1 for the control-release, 188 kg N ha−1 for the pelletised poultry manure and 237 kg N ha−1 for the pelletised biosolids. Consequently, the agronomic nitrogen-use efficiency (NAE, kg DM kg−1 N applied) of the inorganic fertilisers was approximately twice that of the organic fertilisers. Increasing irrigation from 70% to 140% replacement of pan evaporation was detrimental to turfgrass growth and N uptake for the first crop when supplied with the water-soluble fertiliser. Under the low irrigation treatment, inorganic N fertilisers applied at 200–300 kg N ha−1 were adequate for production of turfgrass sod. Section Editor: P. J. Randall  相似文献   

18.
Summary Tillage has been shown to affect the uptake of phosphorus (P) and yield of soybeans, [Glycine max (L.) Merr.], but there is little information concerning the effects of P fertilization on nitrogen (N2) fixation in soybeans under no-tillage. Two field experiments were conducted in 1980 and 1981 to determine the effects of soil P on N2 fixation under no-tillage and to study the interaction of P fertilization and tillage of N2 fixation, nutrient uptake, and yield of soybeans. In Exp. I, P was applied in 1977 at five rates up to 384 kg P ha−1 and the effects of residual soil P were evaluated in 1980 and 1981 under no-tillage management. Nitrogen fixation rates, as measured by acetylene reduction assay, were significantly affected by soil P in Exp. I, but the assay proved to be a poor technique for estimating total plant N in these tests. Acetylene reduction rates and plant P increased rapidly as soil P increased from 2 to 20 mg kg−1, with little additional increase above 20 mg P kg−1. In Exp. II, rates (0, 32, 64, and 128 kg P ha−1) and time (fall, spring and fall plus spring) of P application were compared under conventional tillage and no tillage. However, plant P increased with increasing levels of applied P. Applied P had no affect on acetylene reduction rates but rates were greater for no-tillage than conventional tillage at the V9 and R5 stages of growth in 1981. Plant uptake of P was more efficient under no-tillage than under conventional tillage in 1980 and 1981. Application of 64 kg P ha−1 under no-tillage resulted in equivalent plant P levels as the 128 kg P ha−1 applied under conventional tillage.  相似文献   

19.
Plénet  Daniel  Lemaire  Gilles 《Plant and Soil》1999,216(1-2):65-82
The concept of critical nitrogen concentration(%N c) has been proposed as the minimum%N in shoots required to produce the maximum aerial biomassat a given time. Several authors have shown that%N c declines as a function of aerial biomassaccumulation (W) and the %N cW relationship has been proposed as a diagnostic tool of N statusin different crops, excluding maize. From data obtained in five nitrogenfertilisation experiments in irrigated maize crops, 26 critical data-pointswere selected with a precise statistical procedure. An allometric relationwas fitted and a critical %NW relationshipmodel is proposed in maize as: If W < 1 t ha-1%N c = 3.40 If 1 t ha-1W ≤ 22 t ha-1%N c = 3.40(W)−0.37 The model is applicable to maize crop development between emergenceand silking + 25 days. The model was tested and validated with dataobtained in a network of 17 N fertilisation experiments conducted inFrance under contrasting pedoclimatic conditions. In only nineout of 280 data-points (3.2%), the plant N status was mispredictedwhen ±5% error around %N c wasallowed. A critical N uptake model (Nuc, kg Nha-1) is proposed as Nuc = 34 (W)0.63 A comparison between Nuc and N uptake observedin N treatments giving the maximal grain yields has shown that maizecrops assimilate at least 30 kg N ha-1 in a storage N poolat the silking stage. The significance of the critical%NW and Nu−W relationships is discussed in relation to theoretical models proposed inwhole plant ecophysiology. Different relationships calculated betweenleaf area index and aerial biomass accumulation, and between N uptakeand leaf area were consistent with previous results for other crops.This strengthens the interest of the critical%NW relationship for use as diagnostictool of nitrogen status in maize crops. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
In 1981 a two-year field plot experiment was established to assess the effects of quantities (0, 7.5, 15, 30, 60 and 120 t ha−1) of fresh kelp (Macrocystis integrifolia) on crop growth and nutritional response and chemical properties of a fine-textured soil. Soil was analyzed for NO3−N, NH4−N, electrical conductivity, pH, Cl and exchangeable cations (K, Mg, Ca, Mn and Na). The plots were planted to beans (Phaseolus vulgaris) in the first year and peas (Pisum sativum) in the second year. Marketable bean yields increased in the first year with kelp applications up to 60 t ha−1, with yields, emergence and flowering being reduced by the 120 t ha−1 application. Soluble salts (EC) and Cl concentrations in the soil eight days after application increased linearly and sharply with increasing quantities of kelp. Increased K concentration and moisture content, characteristics of plants growing in a salt-stressed soil environment, were measured. A subsequent companion greenhouse experiment confirmed that the reduced bean emergence and growth with 120 t ha−1 applications of kelp were primarily due to soluble salts. The only growth effects upon peas in the second year was a slight reduction in leaf plus stem yields with increasing applications of kelp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号