首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary A two-year field study was undertaken using15N isotope techniques to differentiate between stimulation of N uptake and N2 fixation in Western Canadian cultivars of spring wheat (Triticum aestivum L. emend Thell) and durum (T. turgidum L. emend Bowden) in response to inoculation with N2-fixing bacteria. Bacterial inoculation either had no effect or lowered the % N derived from the fertilizer and the fertilizer use efficiency. Despite the depression of fertilizer uptake, inoculants did not alter the relative uptake from soil and fertilizer-N pools indicating that bacterial inoculation did not alter rooting patterns. Nitrogen-15 isotope dilution indicated that N2 fixation did occur. In 1984, % plant N derived from the atmosphere (% Ndfa) due to inoculation with Bacillus C-11-25 averaged 23.9% while that withAzospirillum brasilense ATCC 29729 (Cd) averaged 15.5%. In 1985, higher soil N levels reduced these values by approximately one-half. Cultivar x inoculant interactions, while significant, were not consistent across years. However, these interactions did not affect cultivars ‘Cadet’ and ‘Rescue’. In agreement with previous results, ‘Cadet’ performed well with all inoculants in both years while ‘Rescue’ performed poorly. Among 1984 treatments, the N increament in inoculated plants was positively correlated with % Ndfa but no such correlation existed in 1985. N2 fixation averaged over all cultivars and strains was 17.9 and 6.7 kg N fixed ha−1 in 1984 and 1985, respectively. Highest rates of N2 fixation were estimated at 52.4 kg N ha−1 for ‘Cadet’ in 1984 and 31.3 kg N ha−1 for ‘Owens’ in 1985, both inoculated with Bacillus C-11-25, an isolate from southern Alberta soils. Inoculation with either ofAzospirillum brasilense strain Cd (ATCC29729) or 245 did not result in as consistent or as high N2 fixation, suggesting that these wheats had not evolved genetic compatability with this exogenous microorganism. These agronomically significant amounts of N2 fixation occurred under optimally controlled experimental conditions in the field. It is yet to be determined if N2 fixation would occur in response to bacterial inoculation under dryland conditions commonly occurring in Western Canada. Contribution from Agriculture Canada Research Station, Lethbridge, Alberta, Canada.  相似文献   

2.
Dinitrogen fixation in white clover (Trifolium repens L.) grown in pure stand and mixture with perennial ryegrass (Lolium perenne L.) was determined in the field using 15N isotope dilution and harvest of the shoots. The apparent transfer of clover N to perennial ryegrass was simultaneously assessed. The soil was labelled either by immobilizing 15N in organic matter prior to establishment of the sward or by using the conventional labelling procedure in which 15N fertilizer is added after sward establishment. Immobilization of 15N in the soil organic matter has not previously been used in studies of N2 fixation in grass/clover pastures. However, this approach was a successful means of labelling, since the 15N enrichment only declined at a very slow rate during the experiment. After the second production year only 10–16% of the applied 15N was recovered in the harvested herbage. The two labelling methods gave, nonetheless, a similar estimate of the percentage of clover N derived from N2 fixation. In pure stand clover, 75–94% of the N was derived from N2 fixation and in the mixture 85–97%. The dry matter yield of the clover in mixture as percentage of total dry matter yield was relatively high and increased from 59% in the first to 65% in the second production year. The average daily N2 fixation rate in the mixture-grown clover varied from less than 0.5 kg N ha−1 day−1 in autumn to more than 2.6 kg N ha−1 day−1 in June. For clover in pure stand the average N2 fixation rate was greater and varied between 0.5 and 3.3 kg N ha−1 day−1, but with the same seasonal pattern as for clover in mixture. The amount of N fixed in the mixture was 23, 187 and 177 kg N ha−1 in the seeding, first and second production year, respectively, whereas pure stand clover fixed 28, 262 and 211 kg N ha−1 in the three years. The apparent transfer of clover N to grass was negligible in the seeding year, but clover N deposited in the rhizosphere or released by turnover of stolons, roots and nodules, contributed 19 and 28 kg N ha−1 to the grass in the first and second production year, respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Seasonal patterns of growth and nitrogen fixation in field-grown pea   总被引:2,自引:1,他引:1  
The seasonal patterns of growth and symbiotic N2 fixation under field conditions were studied by growth analysis and use of15N-labelled fertilizer in a determinate pea cultivar (Pisum sativum L.) grown for harvest at the dry seed stage. The patterns of fertilizer N-uptake were almost identical in pea and barley (the non-fixing reference crop), but more fertilizer-N was recovered in barley than in pea. The estimated rate of N2 fixation in pea gradually increased during the pre-flowering and flowering growth stages and reached a maximum of 10 kg N fixed per ha per day nine to ten weeks after seedling emergence. This was the time of early pod-development (flat pod growth stage) and also the time for maximum crop growth rate and maximum green leaf area index. A steep drop in N2 fixation rate occurred during the following week. This drop was simultaneous with lodging of the crop, pod-filling (round pod growth stage) and the initiation of mobilization of nitrogen from vegetative organs. The application of fertilizer-N inhibited the rate of N2 fixation only during that period of growth, when the main part of fertilizer-N was taken up and shortly after. Total accumulation of fixed nitrogen was estimated to be 244, 238 and 213 kg N ha−1 in pea supplied with nil, 25 or 50 kg NO 3 −N ha−1, respectively. About one-fourth of total N2 fixation was carried out during preflowering, one fourth during the two weeks of flowering and the remainder during post-flowering. About 55% of the amount of N present in pods at maturity was estimated to be derived from mobilization of N from vegetative organs. “Starter” N (25 or 50 kg NO 3 −N ha−1) did not significantly influence either dry matter and nitrogen accumulation or the development of leaf area. Neither root length and root biomass determined 8 weeks after seedling emergence nor the yield of seed dry matter and nitrogen at maturity were influenced by fertilizer application.  相似文献   

4.
Nitrogen fixation was measured in monocropped sweet-blue lupin (Lupinus angustifolius), lupin intercropped with two ryegrass (Lolium multiflorum) cultivars or with oats (Avena sativa) on an Andosol soil, using the 15N isotope dilution method. At 117 days after planting and at a mean temperature below 10°C, monocropped lupin derived an average of 92% or 195 kg N ha−1 of its N from N2 fixation. Intercropping lupin with cereals increased (p<0.05) the percentage of N derived from atmospheric N2 (% Ndfa) to a mean of 96%. Compared to the monocropped, total N fixed per hectare in intercropped lupin declined approximately 50%, in line with the decrease in seeding rate and dry matter yield. With these high values of N2 fixation, selection of the reference crop was not a problem; all the cereals, intercropped or grown singly produced similar estimates of N2 fixed in lupin. It was deduced from the 15N data that significant N transfer occurred from lupin to intercropped Italian ryegrass but not to intercropped Westerwoldian ryegrass or to oats. Doubling the 15N fertilizer rate from 30 to 60 kg N ha−1 decreased % Ndfa to 86% (p<0.05), but total N fixed was unaltered. These results indicate that lupin has a high potential for N2 fixation at low temperatures, and can maintain higher rates of N2 fixation in soils of high N than many other forage and pasture legumes.  相似文献   

5.
Cultivating dinitrogen-fixing legume trees with crops in agroforestry is a relatively common N management practice in the Neotropics. The objective of this study was to assess the N2 fixation potential of three important Neotropical agroforestry tree species, Erythrina poeppigiana, Erythrina fusca, and Inga edulis, under semi-controlled field conditions. The study was conducted in the humid tropical climate of the Caribbean coastal plain of Costa Rica. In 2002, seedlings of I. edulis and Vochysia guatemalensis were planted in one-meter-deep open-ended plastic cylinders buried in soil within hedgerows of the same species. Overall tree spacing was 1 × 4 m to simulate a typical alley-cropping design. The 15N was applied as (NH4)2SO4 at 10% 15N atom excess 15 days after planting at the rate of 20 kg [N] ha−1. In 2003, seedlings of E. poeppigiana, E. fusca, and V. guatemalensis were planted in the same field using the existing cylinders. The 15N application was repeated at the rate of 20 kg [N] ha−1 15 days after planting and 10 kg [N] ha−1 was added three months after planting. Trees were harvested 9 months after planting in both years. The 15N content of leaves, branches, stems, and roots was determined by mass spectrometry. The percentage of atmospheric N fixed out of total N (%Nf) was calculated based on 15N atom excess in leaves or total biomass. The difference between the two calculation methods was insignificant for all species. Sixty percent of I. edulis trees fixed N2; %Nf was 57% for the N2-fixing trees. Biomass production and N yield were similar in N2-fixing and non-N2-fixing I. edulis. No obvious cause was found for why not all I. edulis trees fixed N2. All E. poeppigiana and E. fusca trees fixed N2; %Nf was ca. 59% and 64%, respectively. These data were extrapolated to typical agroforestry systems using published data on N recycling by the studied species. Inga edulis may recycle ca. 100 kg ha−1 a−1 of N fixed from atmosphere to soil if only 60% of trees fix N2, E. poeppigiana 60–160 kg ha−1 a−1, and E. fusca ca. 80 kg ha−1 a−1.  相似文献   

6.
Summary Accurate estimates of N2 fixation by legumes are requisite to determine their net contribution of fixed N2 to the soil N pool. However, estimates of N2 fixation derived with the traditional15N methods of isotope dilution and AN value are costly.Field experiments utilizing15N-enriched (NH4)2SO4 were conducted to evaluate a modified difference method for determining N2 fixation by fababean, lentil, Alaska pea, Austrian winter pea, blue lupin and chickpea, and to quantify their net contribution of fixed N2 to the soil N pool. Spring wheat and non-nodulated chickpea, each fertilized with two N rates, were utilized as non-fixing controls.Estimates of N2 fixation based on the two control crops were similar. Increasing the N rate to the controls reduced AN values 32, 18 and 43% respectively in 1981, 1982 and 1983 resulting in greater N2 fixation estimates. Mean seasonal N2 fixation by fababean, lentil and Austrian winter pea was near 80 kg N ha–1, pea and blue lupin near 60 kg N ha–1, and chickpea less than 10 kg N ha–1. The net effects of the legume crops on the soil N pool ranged from a 70 kg N ha–1 input by lentil in 1982, to a removal of 48 kg N ha–1 by chickpea in 1983.Estimates of N2 fixation obtained by the proposed modified difference method approximate those derived by the isotope dilution technique, are determined with less cost, and are more reliable than the total plant N procedure.Scientific paper No. 6605. College of Agriculture and Home Economics Research Center, Washington State University, Pullman, WA 99164, U.S.A.  相似文献   

7.
It has recently been reported that N2 fixation and carbon isotope discrimination (Δ) are negatively correlated. To further test this hypothesis, a greenhouse experiment was conducted to investigate if Δ is correlated with the efficiency of lentil (Lens culinaris cv Laird) in fixing atmospheric nitrogen. Lentil seed was inoculated with one of 10 Rhizobium leguminosarum strains that varied in their effectiveness in symbiotic N2 fixation. Carbon-13 discrimination was positively correlated with N2 fixation (r2=0.60*). Although the amount of N2 fixed ranged from 1.5 mg N to 13.5 mg N shoot−1, the range of Δ values was only 25.8 to 26.6%.. It is unlikely that variability of such small magnitude could be of any practical use in selecting for N2-fixing efficiency.  相似文献   

8.
Summary The15N-substratum labeling technique and other indirect methods were used to compare nitrogen (N2) fixation in soybean varieties grown in the field in Greece and Romania. Significant variation in the amount (Ndfa) and proportion of N derived from fixation (% Ndfa) was found in different varieties. With 20 kg N/ha applied to soil, N2 fixed ranged from 22 to 236 kg N/ha in Greece and from 17 to 132 kg N/ha in Romania. In general, varieties or treatments with higher dry matter yield supported greater fixation. Also, varieties with high Ndfa had high % Ndfa andvice versa. Breeding N2-fixing legumes for high yields at low soil N levels therefore appears to be a reasonable strategy for enhancing N2 fixation. Heavy applications of inorganic N fertilizer severely depressed N2 fixation in two out of the three varieties used in Romania. One variety, F 74–412, however, derived slightly higher amounts of N2 from fixation at 100 kg N/ha rate than when fertilized with 20 kg N/ha. In Greece, Chippewa, Williams and Amsoy-71 inoculated with a Nitragin inoculant fixed similar amounts of N2 at both 20 and 100 kg N/ha fertilizer rates. However, when Chippewa and Williams were inoculated with amother, locally-isolated Rhizobium strain, N2 fixation was substantially depressed at the higher N rate.  相似文献   

9.
Summary Previous investigations indicated some forage grass roots in Texas are heavily colonized with N2-fixing bacteria. The most numerous N2-fixing bacteria were in the genera Klebsiella and Enterobacter. In the present investigation inoculation experiments were conducted using 18 isolates of these bacteria to determine if a N2-fixing association could be established between the bacteria and the grassesCynodon dactylon andPanicum coloratum. Plants were grown in soil for approximately 5 months in a greenhouse and were measured periodically for dry matter, nitrogen accumulation, and acetylene reduction activity. Results of the investigation indicated that 25% of the plant-soil systems were active in acetylene reduction and the activity was high enough to indicate agronomically significant quantities of N2 were being fixed (>8kg N ha−1). However, plant systems extrapolated to fix>8 kg N ha−1 contained less nitrogen and accumulated less dry matter than plants less active in acetylene reduction. Inocula could not be re-isolated from healthy grass roots indicating that the N2-fixing activity may have not have been closely assiciated with plant roots. Future research is needed to determine factors limiting colonization of grass roots.  相似文献   

10.
Summary Lucerne is an important forage legume in the south and south-east of Sweden on well-drained soils. However, data is lacking on the apparent amount of nitrogen derived through N2 fixation by field-grown lucerne. This report provides basic information on the subject. The experiment was performed in a lucerne ley grown 40 km north of Uppsala. The input of nitrogen through fixation to the above-ground plant material of an established lucerne (Medicago sativa L.) ley was estimate by15N methodology during two successive years. The amount of fixed N was 242 kg N ha–1 in 1982 and 319 kg N ha–1 in 1983. The proportion of N derived from the atmosphere (%Ndfa) was 70% and 80% for the two years respectively. The first harvest in both years contained a lower proportion fixed N. Both N2 fixation and dry matter production were enhanced during the second year, particularly in the first harvest. The Ndfa was 61% in the first harvest in 1982, compared to 72% Ndfa during the same period in 1983. This demonstrates the strong influence of environment on both dry matter production and N2 fixation capacity of the lucerne.In addition anin situ acetylene reduction assay was used in 1982 to measure the seasonal distribution of the N2 fixation and in 1983 to study the effect of soil moisture on the N2 fixation process. The seasonal pattern showed great dependence on physiological development and harvest pattern of the lucerne ley. The maximum rate of N2 fixation occurred at the bud or early flower stage of growth and was followed by a rapid decline as flowering proceeded. After harvest the nitrogenase activity markedly decreased and remained low during at least two weeks until regrowth of new shoots began. Irrigation doubled the nitrogenase activity of the lucerne in late summer 1983, when soil moisture content in the top soil was near wilting point. No changes in nitrogenase activity did occur in response to watering earlier during the summer, when the soil matric potential was around –0.30 MPa.  相似文献   

11.
Yields of above ground biomass and total N were determined in summer-grown maize and cowpea as sole crops or intercrops, with or without supplementary N fertilizer (25 kg N ha−1, urea) at an irrigated site in Waroona, Western Australia over the period 1982–1985. Good agreement was obtained between estimates of N2 fixation of sole or intercrop cowpea (1984/85 season) based on the15N natural abundance and15N fertilizer dilution techniques, both in the field and in a glasshouse pot study. Field-grown cowpea was estimated to have received 53–69% of its N supply from N2-fixation, with N2-fixation onlyslightly affected by intercropping or N fertilizer application. Proportional reliance on N2-fixation of cowpea in glasshouse culture was lower (36–66%) than in the field study and more affected by applied N. Budgets for N were drawn up for the field intercrops, based on above-ground seed yields, return of crop residues, inputs of fixed N and fertilizer N. No account was taken of possible losses of N through volatilization, denitrification and leaching or gains of N in the soil from root biomass. N2-fixation was estimated tobe 59 kg N ha−1 in the plots receiving no fertilizer N, and 73 kg N ha−1 in plots receiving 25 kg N ha−1 as urea. Comparable fixation by sole cowpea was higher (87 and 82 kg N ha−1 respectively) but this advantage was outweighed by greater land use efficiency by the intercrop than sole crops.  相似文献   

12.
Two experiments have been conducted, one in semi-solid Hoagland nutrient medium and the other in shallow pots containing saline soil. N2-fixing bacteria belonging toAzospirillum, Azotobacter, Klebsiella andEnterobacter were inoculated separately on kallar grass grown in semi-solid nutrient medium. It was shown that inoculation affects root proliferation and also results in15N isotopic dilution. The % Ndfa ranged from 47–70 whereas no significant effect on the total nitrogen uptake was observed. The bacterial colonization of the root surface and the presence of enteric bacteria inside the root hair cells is reported. In a soil pot experiment, non-N2-fixingPolypogon monspeliensis was used as a reference plant (control). A treatment receiving a high rate of nitrogen was also used as a non-N2-fixing control.15N-labelled ammonium sulphate at 20 kg N ha–1 and 90 kg N ha–1 was used. The % Ndfa in the aerial parts of kallar grass was 12–15 whenP. monspeliensis was used as reference plant whereas 37–39% Ndfa was estimated when the treatment receiving high nitrogen fertilizer was used as a non-N2-fixing control. These investigations revealed some problems of methodology which are discussed.  相似文献   

13.
Reiter  Karin  Schmidtke  Knut  Rauber  Rolf 《Plant and Soil》2002,238(1):41-55
Pea as a grain legume and red clover as a forage legume in the seeding year were cultivated in two long-term differentiated tillage systems on a loess soil in Germany. A continuous conventional tillage system (plow; CT) and a continuous minimum tillage system (rotary harrow; MT) were established in 1970. With pea and red clover dry matter accumulation and N parameters (N accumulation, Ndfa, N-harvest-index, N balance) were investigated in 1998 and 1999. Differences in the N2 fixation of pea due to the tillage system could clearly be shown whereas grain yields and total N accumulation were equal in both tillage systems and years. In both years a significantly (P < 0.05) higher Ndfa in the MT system was found at least in the final harvest (maturity of pea): 1998/1999, 0.42/0.54 in CT, 0.62/0.75 in MT. The differences in N2 fixation of pea may be explained by the delayed soil N supply in MT at the beginning of the vegetative period. Simplified N balances of pea were -18 and –25 kg N ha–1 in CT and –5 and +1 kg N ha–1 in MT for 1998 and 1999, respectively. Red clover showed no significant differences in the DM and N accumulation between both tillage systems but a year dependent effect caused by different stubble and root yields between the years was apparent. With red clover slightly, but also significantly (P < 0.05) increased Ndfa values were found in the MT system compared to the CT system with 0.55/0.62 in CT (1998/1999) and 0.64/0.71 in MT. However, the difference in Ndfa between the tillage systems (9 percentage points) was much smaller with red clover than with pea (20 and 21 percentage points in 1998 and 1999, respectively). Soil N uptake of red clover using the longer growing season reflected the more adjusted N supply in both long-term differentiated tillage systems, whereas pea in using only a short-term vegetative period reacted stronger to the lower N mineralization in the MT system in springtime.  相似文献   

14.
Grasses grown in mixture with nodulated legumes often are N-limited, but N fertilization may result in reductions of N2 fixation and legume stands. We studied N-fertilizer effects on N2 fixation for three binary legume-grass mixtures in Uruguay. Replicated swards of white clover (Trifolium repens L.) (WC), red clover (Trifolium pratense L.) (RC), or birdsfoot trefoil (Lotus corniculatus L.) (BT), each in combination with tall fescue (Festuca arundinacea Schreb) (TF) at two legume proportions were sown in 1983 (Exp. 1) and 1984 (Exp. 2). In the fall of 1984, N treatments at 100 kg ha−1 and controls were randomly assigned to subplots in Exp. 1 (established swards) and in Exp. 2 (at seeding). The soil for both experiments was a fine, montmorillonitic, mesic, Typic Argiudolls. Herbage fixed-N was estimated by 15N isotope-dilution with pure stands of TF as reference. In both experiments, N fertilization reduced the proportion of legume N derived from air (% Ndfa) and increased herbage yield only during the first 18 to 20 weeks after application. Fertilizer-N reduced annual fixed-N yield from 178 to 148 kg ha−1 in Exp. 1 and from 65 to 29 kg ha−1 in Exp. 2 Fixed-N yield for BT was markedly reduced by N in both experiments (33 to 53%), whereas for the clovers reduction was lesser in Exp. 1 (9 to 13%) than in Exp. 2 (46 to 64%). Negative effects of N on % Ndfa were more evident for the high legume proportion. We conclude that fertilization with 100 kg N ha−1 reduced % Ndfa only for the immediate 18 to 20 weeks after application. Fertilizer-induced reduction of fixed-N yields lasted longer because of a more prolonged depression of legume proportion, especially for BT and for newly seeded swards. Journal Paper no. J.-13327 of the Iowa Agric. and Home Econ. Exp. Stn., Ames, U.S.A. (Project 2281). Supported in part by the Facultad de Agronomía, Montevideo, Uruguay; and the International Atomic Energy Agency, Vienna, Austria (Project URU/5/012). Journal Paper no. J.-13327 of the Iowa Agric. and Home Econ. Exp. Stn., Ames, U.S.A. (Project 2281). Supported in part by the Facultad de Agronomía, Montevideo, Uruguay; and the International Atomic Energy Agency, Vienna, Austria (Project URU/5/012).  相似文献   

15.
Most of the production of lentil (Lens culinaris) on the Great Plains occurs on soils that are free of indigenous Rhizobium leguminosarum. Inoculation is required to increase yields through N2 fixation. A screening program to evaluate the effectiveness of R. leguminosarum strains for lentil was initially carried out under controlled environments followed by an evaluation under field conditions. In two separate growth room experiments, the effectiveness of 185 and 24 different strains of R. leguminosarum were tested for Laird and Eston lentil. Significant differences between strains in number of nodules, shoot weight and nitrogenase activity (acetylene reduction activity, ARA) were found for lentil grown for 5 weeks. When lentil were grown for 7 weeks, significant differences between strains in number of nodules, total plant weight, total N, and % N were observed.Fourteen strains plus Nitragin C inoculant were selected for further field testing on Eston and Laird lentil at two locations in 1986 and one site in 1987. Inoculation increased yield up to 135%. Percent Ndfa and total N2 fixed ranged from 0 to 76 and 0 to 105 kg ha-1, respectively. N2-fixing activity was site specific and higher spring soil NO3-levels resulted in lower N2-fixing activity. Depending on site and growing conditions, strains 99A1 and I-ICAR-SYR-Le20 appeared to be superior to the other strains tested. A good agreement was found between the estimates for N2 fixation based upon the 15N-isotope dilution and the classical N difference methods. Number of nodules, dry weight of nodules and ARA of Eston and Laird lentil grown under growth room conditions failed to show positive correlations with total dry matter production, total N or total N2 fixed of field grown lentil. However, total plant weight and total N of lentil grown under growth room conditions were highly correlated with field parameters, and were the most reliable screening parameters for the selection of superior rhizobial strains.  相似文献   

16.
Intercropping cotton (Gossypium hirsutum L.) and cowpea (Vigna unguiculata (L.) Walp) is one of the ways to improve food security and soil fertility whilst generating cash income of the rural poor. A study was carried out to find out the effect of cotton–cowpea intercropping on cowpea N2-fixation capacity, nitrogen balance and yield of a subsequent maize crop. Results showed that cowpea suppressed cotton yields but the reduction in yield was compensated for by cowpea grain yield. Cowpea grain yield was significantly different across treatments and the yields were as follows: sole cowpea (1.6 Mg ha−1), 1:1 intercrop (1.1 Mg ha−1), and 2:1 intercrop (0.7 Mg ha−1). Cotton lint yield was also significantly different across treatments and was sole cotton (2.5 Mg ha−1), 1:1 intercrop (0.9 Mg ha−1) and 2:1 intercrop (1.5 Mg ha−1). Intercropping cotton and cowpea increased the productivity with land equivalence ratios (LER) of 1.4 and 1.3 for 1:1 and 2:1 intercrop treatments, respectively. There was an increase in percentage of N fixation (%Ndfa) by cowpea in intercrops as compared to sole crops though the absolute amount fixed (Ndfa) was lower due to reduced plant population. Sole cowpea had %Ndfa of 73%, 1:1 intercrop had 85% and 2:1 intercrop had 77% while Ndfa was 138 kg ha−1 for sole cowpea, 128 kg ha−1 for 1:1 intercrop and 68 kg ha−1 for 2:1 intercrop and these were significantly different. Sole cowpea and the intercrops all showed positive N balances of 92 kg ha−1 for sole cowpea and 1:1 intercrop, and 48 kg ha−1 for 2:1 intercrop. Cowpea fixed N transferred to the companion cotton crop was very low with 1:1 intercrop recording 3.5 kg N ha−1 and 2:1 intercrop recording 0.5 kg N ha−1. Crop residues from intercrops and sole cowpea increased maize yields more than residues from sole cotton. Maize grain yield was, after sole cotton (1.4 Mg ha−1), sole cowpea (4.6 Mg ha−1), 1:1 intercrops (4.4 Mg ha−1) and 2:1 intercrops (3.9 Mg ha−1) and these were significantly different from each other. The LER, crop yields, %N fixation and, N balance and residual fertility showed that cotton–cowpea intercropping could be a potentially productive system that can easily fit into the current smallholder farming systems under rain-fed conditions. The fertilizer equivalency values show that substantial benefits do accrue and effort should be directed at maximizing the dry matter yield of the legume in the intercrop system while maintaining or improving the economic yield of the companion cash crop.  相似文献   

17.
The symbiotic biological N2fixation by Acacia senegal was estimated using the 15N natural abundance (δ 15N) procedure on eight provenances collected from different environments and soil types grown in a clay soil in the Blue Nile region, Sudan. Balanites aegyptiaca (a non-legume) was used as a non-N2-fixing reference plant to allow 15N-based estimates of the proportion of the Acacia N derived from atmospheric N2 (Ndfa) to be calculated. Results show variation in leaf δ 15N between A. senegal and the reference plant and among years. The relative δ 15N values (‰) were higher in B. aegyptiaca than in the N2-fixing acacia provenances. Provenances originally collected from clay soils fixed little N in the first year, but the amount fixed increased as the trees aged. All provenances showed a decrease in δ 15N with age. The Ndfa varied between 24% (Mazmoom provenance) and 61% (Rahad provenance) 4 years after planting. There was no significant difference in δ 15N between provenance groups based on soil type or rainfall at original growing site. The amount of Ndfa increased significantly with age in all provenances. The above-ground contribution of fixed N to foliage growth in a 4-year-old A. senegal was highest in the Rahad sand–soil provenance (46.7 kg N ha−1) and lowest in the Mazmoom clay-soil provenance (28.7 kg N ha−1). Our study represents the first use of the δ 15N method for estimating the N input by A. senegal to the clay plain soils of the gum belt in the Sudan.  相似文献   

18.
Fernández Valiente  E.  Ucha  A.  Quesada  A.  Leganés  F.  Carreres  R. 《Plant and Soil》2000,221(1):107-112
This study investigate the potential contribution of nitrogen fixation by indigenous cyanobacteria to rice production in the rice fields of Valencia (Spain). N2-fixing cyanobacteria abundance and N2 fixation decreased with increasing amounts of fertilizers. Grain yield increased with increasing amounts of fertilizers up to 70 kg N ha-1. No further increase was observed with 140 kg N ha-1. Soil N was the main source of N for rice, only 8–14% of the total N incorporated by plants derived from 15N fertilizer. Recovery of applied 15N-ammonium sulphate by the soil–plant system was lower than 50%. Losses were attributed to ammonia volatilization, since only 0.3–1% of applied N was lost by denitrification. Recovery of 15N from labeled cyanobacteria by the soil–plant system was higher than that from chemical fertilizers. Cyanobacterial N was available to rice plant even at the tillering stage, 20 days after N application. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
A field study was conducted on a clay soil (Andaqueptic Haplaquoll) in the Philippines to directly measure the evolution of (N2+N2O)−15N from 98 atom %15N-labeled urea broadcast at 29 kg N ha−1 into 0.05-m-deep floodwater at 15 days after transplanting (DT) rice. The flux of (N2+N2O)−15N during the 19 days following urea application never exceeded 28 g N ha−1 day−1. The total recovery of (N2+N2O)−15N evolved from the field was only 0.51% of the applied N, whereas total gaseous15N loss estimated from unrecovered15N in the15N balance was 41% of the applied N. Floodwater (nitrate+nitrite)−N in the 5 days following urea application never exceeded 0.14 g N m−3 or 0.3% of the applied N. Prior cropping of cowpea [Vigna unguiculata (L.) Walp.] to flowering with subsequent incorporation of the green manure (dry matter=2.5 Mg ha−1, C/N=15) at 15 days before rice transplanting had no effect on fate of urea applied to rice at 15 DT. The recovery of (N2+N2O)−15N and total15N loss during the 19 days following urea application were 0.46 and 40%, respectively. Direct recovery of evolved (N2+N2O)−15N and total15N loss from 27 kg applied nitrate-N ha−1 were 20% and 53% during the same 19-day period. The failure of directly-recovered (N2+N2O)−15N to match total15N loss from added nitrate-15N might be due to entrapment of denitrification end products in soil or transport of gaseous end products to the atmosphere through rice plants. The rapid conversion of added nitrate-N to (N2+N2O)−N, the apparently sufficient water soluble soil organic C for denitrification (101 μg C g−1 in the top 0.15-m soil layer), and the low floodwater nitrate following urea application suggested that denitrification loss from urea was controlled by supply of nitrate rather than by availability of organic C.  相似文献   

20.
This paper 1) reviews improvements and new approaches in methodologies for estimating biological N2 fixation (BNF) in wetland soils, 2) summarizes earlier quantitative estimates and recent data, and 3) discusses the contribution of BNF to N balance in wetland-rice culture.Measuring acetylene reducing activity (ARA) is still the most popular method for assessing BNF in rice fields. Recent studies confirm that ARA measurements present a number of problems that may render quantitative extrapolations questionable. On the other hand, few comparative measures show ARA's potential as a quantitative estimate. Methods for measuring photodependent and associative ARA in field studies have been standardized, and major progress has been made in sampling procedures. Standardized ARA measurements have shown significant differences in associative N2 fixation among rice varieties.The 15N dilution method is suitable for measuring the percentage of N derived from the atmosphere (% Ndfa) in legumes and rice. In particular, the 15N dilution technique, using available soil N as control, appears to be a promising method for screening rice varieties for ability to utilize biologically fixed N. Attempts to adapt the 15N dilution method to aquatic N2 fixers (Azolla and blue-green algae [BGA]) encountered difficulties due to the rapid change in 15N enrichment of the water.Differences in natural 15N abundance have been used to show differences among plant organs and species or varieties in rice and Azolla, and to estimate Ndfa by Azolla, but the method appears to be semi-quantitative.Recent pot experiments using stabilized 15N-labelled soil or balances in pots covered with black cloth indicate a contribution of 10–30 kg N ha-1 crop-1 by heterotrophic BNF in flooded planted soil with no or little N fertilizer used.Associative BNF extrapolated from ARA and 15N incorporation range from 1 to 7 kg N ha-1 crop-1. Straw application increases heterotrophic and photodependent BNF. Pot experiments show N gains of 2–4 mg N g-1 straw added at 10 tons ha-1.N2 fixation by BGA has been almost exclusively estimated by ARA and biomass measurements. Estimates by ARA range from a few to 80 kg N ha-1 crop-1 (average 27 kg). Recent extensive measurements show extrapolated values of about 20 kg N ha-1 crop-1 in no-N plots, 8 kg in plots with broadcast urea, and 12 kg in plots with deep-placed urea.Most information on N2 fixed by Azolla and legume green manure comes from N accumulation measurements and determination of % Ndfa. Recent trials in an international network show standing crops of Azolla averaging 30–40 kg N ha-1 and the accumulation of 50–90 kg N ha-1 for two crops of Azolla grown before and after transplanting rice. Estimates of % Ndfa in Azolla by 15N dilution and delta 15N methods range from 51 to 99%. Assuming 50–80% Ndfa in legume green manures, one crop can provide 50–100 kg N ha-1 in 50 days. Few balance studies in microplots or pots report extrapolated N gains of 150–250 kg N ha-1 crop-1.N balances in long-term fertility experiments range from 19 to 98 kg N ha-1 crop-1 (average 50 kg N) in fields with no N fertilizer applied. The problems encountered with ARA and 15N methods have revived interest in N balance studies in pots. Balances are usually highest in flooded planted pots exposed to light and receiving no N fertilizer; extrapolated values range from 16 to 70 kg N ha-1 crop-1 (average 38 kg N). A compilation of balance experiments with rice soil shows an average balance of about 30 kg N ha-1 crop-1 in soils where no inorganic fertilizer N was applied.Biological N2 fixation by individual systems can be estimated more or less accurately, but total BNF in a rice field has not yet been estimated by measuring simultaneously the activities of the various components in situ. As a result, it is not clear if the activities of the different N2-fixing systems are independent or related. A method to estimate in situ the contribution of N2 fixed to rice nutrition is still not available. Dynamics of BNF during the crop cycle is known for indigenous agents but the pattern of fixed N availability to rice is known only for a few green manure crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号