首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Tobacco etch virus (TEV) protease is a cysteine protease exhibiting stringent sequence specificity. The enzyme is widely used in biotechnology for the removal of the affinity tags from recombinant fusion proteins. Crystal structures of two TEV protease mutants as complexes with a substrate and a product peptide provided the first insight into the mechanism of substrate specificity of this enzyme. We now report a 2.7A crystal structure of a full-length inactive C151A mutant protein crystallised in the absence of peptide. The structure reveals the C terminus of the protease bound to the active site. In addition, we determined dissociation constants of TEV protease substrate and product peptides using isothermal titration calorimetry for various forms of this enzyme. Data suggest that TEV protease could be inhibited by the peptide product of autolysis. Separate modes of recognition for native substrates and the site of TEV protease self-cleavage are proposed.  相似文献   

2.
Affinity tags have become indispensable tools for protein expression and purification. Yet, because they have the potential to interfere with structural and functional studies, it is usually desirable to remove them from the target protein. The stringent sequence specificity of the tobacco etch virus (TEV) protease has made it a useful reagent for this purpose. However, a potential limitation of TEV protease is that it is believed to require a Gly or Ser residue in the P1' position of its substrates to process them with reasonable efficiency. Consequently, after an N-terminal affinity tag is removed by TEV protease, the target protein will usually retain a non-native Ser or Gly residue on its N-terminus, and in some cases this may affect its biological activity. To investigate the stringency of the requirement for Gly or Ser in the P1' position of a TEV protease recognition site, we constructed 20 variants of a fusion protein substrate with an otherwise optimal recognition site, each containing a different amino acid in the P1' position. The efficiency with which these fusion proteins were processed by TEV protease was compared both in vivo and in vitro. Additionally, the kinetic parameters K(M) and k(cat) were determined for a representative set of peptide substrates with amino acid substitutions in the P1' position. The results indicate that many side-chains can be accommodated in the P1' position of a TEV protease recognition site with little impact on the efficiency of processing.  相似文献   

3.
Tobacco etch virus NIa proteinase (TEV protease) is an important tool for the removal of fusion tags from recombinant proteins. Production of TEV protease in Escherichia coli has been hampered by insolubility and addressed by many different strategies. However, the best previous results and newer approaches for protein expression have not been combined to test whether further improvements are possible. Here, we use a quantitative, high-throughput assay for TEV protease activity in cell lysates to evaluate the efficacy of combining several previous modifications with new expression hosts and induction methods. Small-scale screening, purification and mass spectral analysis showed that TEV protease with a C-terminal poly-Arg tag was proteolysed in the cell to remove four of the five arginine residues. The truncated form was active and soluble but in contrast, the tagged version was also active but considerably less soluble. An engineered TEV protease lacking the C-terminal residues 238-242 was then used for further expression optimization. From this work, expression of TEV protease at high levels and with high solubility was obtained by using auto-induction medium at 37 degrees C. In combination with the expression work, an automated two-step purification protocol was developed that yielded His-tagged TEV protease with >99% purity, high catalytic activity and purified yields of approximately 400 mg/L of expression culture (approximately 15 mg pure TEV protease per gram of E. coli cell paste). Methods for producing glutathione-S-transferase-tagged TEV with similar yields (approximately 12 mg pure protease fusion per gram of E. coli cell paste) are also reported.  相似文献   

4.
Haspel J  Blanco C  Jacob J  Grumet M 《BioTechniques》2001,30(1):60-1, 64-6
We describe a novel Fc fusion protein system that can be cleaved by tobacco etch virus (TEV) protease. This system is desirable because it takes advantage of the high specificity of TEV protease and its activity at 4 degrees C. We produced two TEV-Fc fusion proteins that contain the first three Ig domains and all six Ig domains of the cell adhesion molecule L1. Both proteins were efficiently cleaved by TEV protease at 4 degrees C. Functional analysis of the cleavage products in neurite outgrowth assays showed they had similar activities to their parental Fc fusion proteins. Therefore, TEV-Fc fusion proteins may increase the utility and flexibility of the Fc fusion protein system.  相似文献   

5.
Affinity tags are widely used as vehicles for the production of recombinant proteins. Yet, because of concerns about their potential to interfere with the activity or structure of proteins, it is almost always desirable to remove them from the target protein. The proteases that are most often used to cleave fusion proteins are factor Xa, enterokinase, and thrombin, yet the literature is replete with reports of fusion proteins that were cleaved by these proteases at locations other than the designed site. It is becoming increasingly evident that certain viral proteases have more stringent sequence specificity. These proteases adopt a trypsin-like fold but possess an unconventional catalytic triad in which Cys replaces Ser. The tobacco etch virus (TEV) protease is the best-characterized enzyme of this type. TEV protease cleaves the sequence ENLYFQG/S between QG or QS with high specificity. The tobacco vein mottling virus (TVMV) protease is a close relative of TEV protease with a distinct sequence specificity (ETVRFQG/S). We show that, like TEV protease, TVMV protease can be used to cleave fusion proteins with high specificity in vitro and in vivo. We compared the catalytic activity of the two enzymes as a function of temperature and ionic strength, using an MBP-NusG fusion protein as a model substrate. The behavior of TVMV protease was very similar to that of TEV protease. Its catalytic activity was greatest in the absence of NaCl, but diminished only threefold with increasing salt up to 200 mM. We found that the optimum temperatures of the two enzymes are nearly the same and that they differ only two-fold in catalytic efficiency, both at room temperature and 4 degrees C. Hence, TVMV protease may be a useful alternative to TEV protease when a recombinant protein happens to contain a sequence that is similar to a TEV protease recognition site or for protein expression strategies that involve the use of more than one protease.  相似文献   

6.
Tobacco etch virus protease (TEVp) is frequently applied in the cleavage of fusion protein. However, production of TEV protease in Escherichia coli is hampered by low yield and poor solubility, and auto-cleavage of wild type TEVp gives rise to the loss-of-function. Previously it was reported that TEVp S219V displayed more stability, and TEVp variant containing T17S/N68D/I77V and double mutant L56V/S135G resulted in the enhanced production and solubility, respectively. Here, we introduced T17S/N68D/I77V in TEVp S219V to generate TEVpM1 and combined five amino acid mutations (T17S/L56V/N68D/I77V/S135G) in TEVp S219V to create TEVpM2. Among TEVp S219V, and two constructed variants, TEVpM2 displayed highest solubility and catalytic activity in vivo, using EmGFP as the solubility reporter, and the designed fusion protein as in vivo substrate containing an N-terminal hexahistidine tagged GST, a peptide sequence for thrombin and TEV cut and E. coli diaminopropionate ammonia-lyase. The purified TEVp mutants fused with double hexahistidine-tag at N and C terminus showed highest yield, solubility and cleavage efficiency. Mutations of five amino acid residues in TEVpM2 slightly altered protein secondary structure conformed by circular dichroism assay.  相似文献   

7.
Expressing proteins with fusion partners improves yield and simplifies the purification process. We developed a novel fusion partner to improve the secretion of heterologous proteins that are otherwise poorly excreted in yeast. The VOA1 (YGR106C) gene of Saccharomyces cerevisiae encodes a subunit of vacuolar ATPase. We found that C-terminally truncated Voa1p was highly secreted into the culture medium, even when fused with rarely secreted heterologous proteins such as human interleukin-2 (hIL-2). Deletion mapping of C-terminally truncated Voa1p, identified a hydrophilic 28-amino acid peptide (HL peptide) that was responsible for the enhanced secretion of target protein. A purification tag and a protease cleavage site were added to use HL peptide as a multi-purpose fusion partner. The utility of this system was tested via the expression and purification of various heterologous proteins. In many cases, the yield of target proteins fused with the peptide was significantly increased, and fusion proteins could be directly purified with affinity chromatography. The fusion partner was removed by in vitro processing, and intact proteins were purified by re-application of samples to affinity chromatography.  相似文献   

8.
Here we describe a method for controlled intracellular processing (CIP) of fusion proteins by tobacco etch virus (TEV) protease. A fusion protein containing a TEV protease recognition site is expressed in Escherichia coli cells that also contain a TEV protease expression vector. The fusion protein vector is an IPTG-inducible ColE1-type plasmid, such as a T7 or tac promoter vector. In contrast, the TEV protease is produced by a compatible p15A-type vector that is induced by tetracyclines. Not only is the TEV protease regulated independently of the fusion protein, but its expression is highly repressed in the absence of inducer. Certain fusion partners have been shown to enhance the yield and solubility of their passenger proteins. When CIP is used as a purification step, it is possible to take advantage of these characteristics while both eliminating the need for large amounts of pure protease at a later stage and possibly simplifying the purification process. Additionally, we have observed that in some cases the timing of intracellular proteolysis can affect the solubility of the cleaved passenger protein, allowing it to be directed to either the soluble or the insoluble fraction of the crude cell lysate. This method also makes it possible to quickly gauge the efficiency of proteolysis in vivo, before protein purification has begun and in vitro processing is attempted.  相似文献   

9.
Because of its stringent sequence specificity, tobacco etch virus (TEV) protease emerges as a useful reagent with wide application in the cleavage of recombinant fusion proteins. However, the solubility of TEV protease expressed in Escherichia coli is extremely low. In the present study, we introduced a more efficient system to improve and facilitate the soluble production of TEV protease in E. coli. Optimal expression of soluble His6-TEV was achieved by examining the contribution of chaperone co-expression and lower temperature fermentation. When further purified by Ni(2+) affinity chromatography, 65mg of His6-TEV was isolated with purity over 95% from 1L of culture. The enzyme activity of His6-TEV was generally characterized by using GST-EGFP and His6-L-TNF fusion protein as substrates, which contained a TEV cleavage site between two moieties.  相似文献   

10.
Because of its stringent sequence specificity, the catalytic domain of the nuclear inclusion protease from tobacco etch virus (TEV) is a useful reagent for cleaving genetically engineered fusion proteins. However, a serious drawback of TEV protease is that it readily cleaves itself at a specific site to generate a truncated enzyme with greatly diminished activity. The rate of autoinactivation is proportional to the concentration of TEV protease, implying a bimolecular reaction mechanism. Yet, a catalytically active protease was unable to convert a catalytically inactive protease into the truncated form. Adding increasing concentrations of the catalytically inactive protease to a fixed amount of the wild-type enzyme accelerated its rate of autoinactivation. Taken together, these results suggest that autoinactivation of TEV protease may be an intramolecular reaction that is facilitated by an allosteric interaction between protease molecules. In an effort to create a more stable protease, we made amino acid substitutions in the P2 and P1' positions of the internal cleavage site and assessed their impact on the enzyme's stability and catalytic activity. One of the P1' mutants, S219V, was not only far more stable than the wild-type protease (approximately 100-fold), but also a more efficient catalyst.  相似文献   

11.
Tobacco Etch Virus Protease (TEV protease) is widely used as a tool for separation of recombinant target proteins from their fusion partners. The crystal structures of two mutants of TEV protease, active autolysis-resistant mutant TEV-S219D in complex with the proteolysis product, and inactive mutant TEV-C151A in complex with a substrate, have been determined at 1.8 and 2.2 A resolution, respectively. The active sites of both mutants, including their oxyanion holes, have identical structures. The C-terminal residues 217-221 of the enzyme are involved in formation of the binding pockets S3-S6. This indicates that the autolysis of the peptide bond Met218-Ser219 exerts a strong effect on the fine-tuning of the substrate in the enzyme active site, which results in considerable decrease in the enzymatic activity.  相似文献   

12.
Thionins are antimicrobial plant peptides produced as preproproteins consisting of a signal peptide, the thionin domain, and a so-called acidic domain. Only thionin itself has been isolated from plants. To study the processing of the precursor, it has to be produced in a heterologous system. Since both domains contain several cysteines and, due to the known antimicrobial activity of the thionin, we tested the expression of all four Arabidopsis proproteins as fusion proteins. Periplasmic expression as fusion with maltose binding protein was not successful but cytoplasmic expression as His-tagged TRX fusion proteins with a TEV recognition sequence resulted in proteins of correct size. Use of the SHuffle strain C3030 further improved the expression. Fusion proteins inhibited growth of Escherichia coli. They could be cleaved by TEV protease, releasing authentic proproteins without any additional amino acid at the N-terminus.  相似文献   

13.
The cysteine-rich peptide hepcidin is an antimicrobial peptide and iron transport regulator that has been found in vertebrates including birds, fish and mammals. To elucidate the structure and biological function of fish hepcidin, which is difficult to produce synthetically, we have cloned several plasmid constructs encoding hepcidin from Japanese flounder, Paralichthys olivaceus, and tested expression of recombinant peptides, each with an N-terminal hexahistidine (6xHis) tag, in inclusion bodies or the periplasmic space of Escherichia coli. Hepcidin expressed in inclusion bodies was reduced, and subsequently refolded using a dilution technique with a cysteine redox system. The oxidized His-hepcidin monomer was separated from protein multimers and mass spectrometry analysis showed that the peptide was of the predicted size and contained four disulfide bonds. Removal of the 6xHis tag was attempted using enzymatic cleavage by Factor Xa and tobacco etch virus (TEV) protease or chemical cleavage by hydroxylamine. The Factor Xa cleavage was unsuccessful and hydroxylamine cleavage resulted in aggregation of cleaved peptide. TEV protease cleavage was successful but immediately resulted in hexamer formation despite varying reaction conditions (redox, non-redox, pH, temperature, target protein concentration, type of buffer). However, the recombinant His-hepcidin fusion peptide monomer showed considerable antimicrobial activity. NMR-based studies showed that hepcidin contained a rare vicinal disulfide linkage at the top of a loop structure and a short beta-sheet structure encompassing residues 7-13 and 19-25 that is stabilized by three disulfide bonds.  相似文献   

14.
E6 is a small oncoprotein involved in tumorigenesis induced by papillomaviruses (PVs). E6 often recognizes its cellular targets by binding to short motifs presenting the consensus LXXLL. E6 proteins have long resisted structural analysis. We found that bovine papillomavirus type 1 (BPV1) E6 binds the N-terminal LXXLL motif of the cellular protein paxillin with significantly higher affinity as compared to other E6/peptide interactions. Although recombinant BPV1 E6 was poorly soluble in the free state, provision of the paxillin LXXLL peptide during BPV1 E6 biosynthesis greatly enhanced the protein's solubility. Expression of BPV1 E6/LXXLL peptide complexes was carried out in bacteria in the form of triple fusion constructs comprising, from N- to C-terminus, the soluble carrier protein maltose binding protein (MBP), the LXXLL motif and the E6 protein. A TEV protease cleavage site was placed either between MBP and LXXLL motif or between LXXLL motif and E6. These constructs allowed us to produce highly concentrated samples of BPV1 E6, either covalently fused to the C-terminus of the LXXLL motif (intra-molecular complex) or non-covalently bound to it (inter-molecular complex). Heteronuclear NMR measurements were performed and showed that the E6 protein was folded with similar conformations in both covalent and non-covalent complexes. These data open the way to novel structural and functional studies of the BPV1 E6 in complex with its preferential target motif.  相似文献   

15.
The tobacco etch potyvirus (TEV) genome encodes a polyprotein that is processed by three virus-encoded proteinases. Although replication of TEV likely occurs in the cytoplasm, two replication-associated proteins, VPg-proteinase (nuclear inclusion protein a) (NIa) and RNA-dependent RNA polymerase (nuclear inclusion protein b) (NIb), accumulate in the nucleus of infected cells. The 6-kDa protein is located adjacent to the N terminus of NIa in the TEV polyprotein, and, in the context of a 6-kDa protein/NIa (6/NIa) polyprotein, impedes nuclear translocation of NIa (M. A. Restrepo-Hartwig and J. C. Carrington, J. Virol. 66:5662-5666, 1992). The 6-kDa protein and three polyproteins containing the 6-kDa protein were identified by affinity chromatography of extracts from infected plants. Two of the polyproteins contained NIa or the N-terminal VPg domain of NIa linked to the 6-kDa protein. To investigate the role of the 6-kDa protein in vivo, insertion and substitution mutagenesis was targeted to sequences coding for the 6-kDa protein and its N- and C-terminal cleavage sites. These mutations were introduced into a TEV genome engineered to express the reporter protein beta-glucuronidase (GUS), allowing quantitation of virus amplification by a fluorometric assay. Three-amino-acid insertions at each of three positions in the 6-kDa protein resulted in viruses that were nonviable in tobacco protoplasts. Disruption of the N-terminal cleavage site resulted in a virus that was approximately 10% as active as the parent, while disruption of the C-terminal processing site eliminated virus viability. The subcellular localization properties of the 6-kDa protein were investigated by fractionation and immunolocalization of 6-kDa protein/GUS (6/GUS) fusion proteins in transgenic plants. Nonfused GUS was associated with the cytosolic fraction (30,000 x g centrifugation supernatant), while 6/GUS and GUS/6 fusion proteins sedimented with the crude membrane fraction (30,000 x g centrifugation pellet). The GUS/6 fusion protein was localized to apparent membranous proliferations associated with the periphery of the nucleus. These data suggest that the 6-kDa protein is membrane associated and is necessary for virus replication.  相似文献   

16.
We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to “stick” to its fusion partners during affinity purification.  相似文献   

17.
Addition of an N-terminal fusion partner can greatly aid the expression and purification of a recombinant protein in Escherichia coli. We investigated two genetically engineered proteases designed to remove the fusion partner after the protein of interest has been expressed. Recombinant human insulin-like growth factor-II (hIGF-II) has been produced from E. coli-derived fusion proteins using a novel enzymatic cleavage system that uses a mutant of alpha-lytic protease. Initially, two potential fusion protein linkers were designed, Pro-Ala-Pro-His (PAPH) and Pro-Ala-Pro-Met (PAPM), and were tested as substrates in the form of synthetic dodecapeptides. Using mass spectrometry and reverse-phase HPLC, the position of cleavage was confirmed and the kinetics of synthetic peptide cleavage were examined. Use of the linkers in hIGF-II fusion proteins produced in E. coli was then evaluated. The fusion proteins constructed consist of the first 11 amino acids of porcine growth hormone linked N-terminally to hIGF-II by six amino acids that include the dipeptide Val-Asn followed by a variable tetrapeptide protease cleavage motif. Mass spectrometry and N-terminal sequencing confirmed that proteolytic cleavage of the fusion proteins had occurred at the predicted sites. Using the fusion proteins as substrates, the cleavage of the rationally designed motifs by the alpha-lytic protease mutant was compared. The fusion protein containing the motif PAPM had a k(cat)/K(M) ratio indicating a 1.6-fold preference over the PAPH fusion protein for cleavage by this enzyme. Furthermore, when hIGF-II fusion proteins containing the designed cleavable linkers were processed with the engineered alpha-lytic protease, they gave greatly improved yields of native hIGF-II compared to an analogous fusion protein cleaved by H64A subtilisin. Comparison of the peptide and protein cleavage studies shows that the efficient proteolysis of the cleavage motifs is an inherent property of the designed sequences and is not determined by secondary or tertiary structure in the fusion proteins.  相似文献   

18.
Due to its high degree of sequence specificity, the catalytic domain of the nuclear inclusion protease from tobacco etch virus (TEV protease) is a useful reagent for cleaving genetically engineered fusion proteins. However, the overproduction of TEV protease in Escherichia coli has been hampered in the past by low yield and poor solubility. Here we demonstrate that the low yield can be attributed to the presence of arginine codons in the TEV protease coding sequence that are rarely used in E. coli and specifically to a tandem pair of AGA codons. The yield of protease can be improved by replacing these rare arginine codons with synonymous ones or by increasing the supply of cognate tRNA that is available to the cell. Furthermore, we show that when ribosomes become stalled at rare arginine codons in the TEV protease mRNA, the nascent polypeptides are targeted for proteolytic degradation in BL21(DE3) cells by a mechanism that does not involve tmRNA-mediated peptide tagging.  相似文献   

19.
Low solubility of proteins overexpressed in E. coli is a frequent problem in high-throughput structural genomics. To improve solubility of proteins from mesophilic Shewanella oneidensis MR-1 and thermophilic Clostridium thermocellum JW20, an approach was attempted that included a fusion of the target protein to a maltose-binding protein (MBP) and a decrease of induction temperature. The MBP was selected as the most efficient solubilizing carrier when compared to a glutathione S-transferase and a Nus A protein. A tobacco etch virus (TEV) protease recognition site was introduced between fused proteins using a double polymerase-chain reaction and four primers. In this way, 79 S. oneidensis proteins have been expressed in one case with an N-terminal 30-residue tag and in another case as a fusion protein with MBP. A foreign tag might significantly affect the properties of the target polypeptide. At 37 degrees C and 18 degrees C induction temperatures, only 5 and 17 tagged proteins were soluble, respectively. In fusion with MBP 4, 34, and 38 proteins were soluble upon induction at 37 degrees, 28 degrees, and 18 degrees C, respectively. The MBP is assumed to increase stability and solubility of a target protein by changing both the mechanism and the cooperativity of folding/unfolding. The 66 C. thermocellum proteins were expressed as fusion proteins with MBP. Induction at 37 degrees, 28 degrees, and 18 degrees C produced 34, 57, and 60 soluble proteins, respectively. The higher solubility of C. thermocellum proteins in comparison with the S. oneidensis proteins under similar conditions of induction correlates with the thermophilicity of the host. The two-factor Wilkinson-Harrison statistical model was used to identify soluble and insoluble proteins. Theoretical and experimental data showed good agreement for S. oneidensis proteins; however, the model failed to identify soluble/insoluble Clostridium proteins. A suggestion has been made that the Wilkinson-Harrison model is not applicable to C. thermocellum proteins because it did not account for the peculiarities of protein sequences from thermophiles.  相似文献   

20.
In this work, a multifunctional expression cassette, termed Multitags, combining different and complementary functionalities, was designed and used to monitor the expression and the purification of two model proteins (Pfu DNA polymerase and Myosin-VIIa- and Rab-Interracting protein : MyRIP). Multitags contains two affinity purification tags, a polyhistidine sequence (10× His) and the streptavidin-binding peptide (SBP) and as a marker tag the heme-binding domain of rat cytochrome b5 followed by the TEV cleavage site. Using the Multitags as fusion partner, more than 90 % of both fusion proteins were produced in soluble form when expressed in Escherichia coli KRX. In addition, high purity (99 %) of recombinant proteins was achieved after two consecutive affinity purification steps. The expression cassette also demonstrated an accurate monitoring capability comparable to that of a dual recognition-based method. The choice of the SBP tag was considered as an integral process that included a method for tag removal. Thus, an immobilized TEV protease fixed on streptavidin–agarose matrix was used for the cleavage of fusion proteins. After digestion, both unprocessed fusion proteins and Multitags were retained on the proteolytic column via their SBP sequence, allowing cleavage and recovery of target proteins on one step. This combined approach may accelerate the development of optimized production processes, while insuring high product quality and a low production cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号