首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The agricultural soils near a copper smelter in southeast China were found to be highly contaminated with Cu, Pb, Zn, and Cd. Metal migration from the soil to groundwater presents an environmental risk that depends on the physicochemical properties of the contaminated soils. Soil solution samples were obtained using lysimeters from a loam soil with multiple metal pollutions over a period of about 1 yr. A field lysimeter study was also conducted to examine the potential use of (S, S')-ethylenediamine-N, N'-disuccinic acid trisodium salt (EDDSNa3) in chelate-enhanced phytoremedation and to evaluate the leaching of heavy metals. The average heavy metal concentrations in the soil solution (without the addition of EDDS) were high (e.g., 0.15 mg Pb L(-1) at a 50-cm depth) compared to the upper limit for protection of groundwater in China, but varied during the sampling period. Cu concentrations were not correlated with pH or dissolved organic carbon (DOC), but Zn and Cd concentrations were related to soil solution pH. EDDS enhanced metal solubility in the soil, but plant metal uptake by Elsholtzia splendens Nakai did not increase accordingly. There may be an increasing risk of groundwater pollution by Cu and the EDDS enhanced phytoremediation technique needs to be carefully applied to minimize this side effect.  相似文献   

2.
The study of the concentrations of Cr, Zn, Cd, Pb, Ni, and Cu in soils under different land uses in rural, semi-urban, and urban zones in the Niger Delta was carried out with a view to providing information on the effects of the different land uses on the concentrations of trace elements in soils. Our results indicate significant variability in concentrations of these metals in soils under different land uses in rural, semi-urban, and urban zones. The maximum concentrations of metals in the examined soil samples were 707.5 mg.kg?1, 161.0 mg.kg?1, 2.6 mg.kg?1, 59.6 mg.kg?1, 1061.3 mg.kg?1, and 189.2 mg.kg?1 for Cr, Zn, Cd, Pb, Ni, and Cu, respectively. In the rural zone, the cassava processing mill is a potent source of Ni, Cr, Cu, and Zn while agricultural activities are a source of Cd, and automobile emissions and the use of lead oxide batteries constitute the major sources of Pb. In the urban zone, soils around the wood processing mill showed elevated concentrations of Cu, Cr, Zn, and Ni, while soils around automobile mechanic works and motor parks showed elevated levels of Pb. Elevated Cd concentrations were observed in soils under the following land uses: urban motor park, playground, welding and fabrication sheds, and metallic scrap dump. The contamination/pollution index of metals in the soil follows the order: Ni > Cd > Cr > Zn > Cu > Pb. The multiple pollution index of metals at different sites were greater than 1, indicating that these soils fit into “slight pollution” to “excessive pollution” ranges with significant contributions from Cr, Zn, Cd, Ni, and Cu.  相似文献   

3.
新疆焉耆盆地辣椒地土壤重金属污染及生态风险预警   总被引:5,自引:0,他引:5  
从新疆加工辣椒主产地(焉耆盆地)采集105个辣椒地典型土壤样品,测定其中As、Cd、Cr、Cu、Mn、Ni、Pb和Zn等8种重金属元素的含量。采用污染负荷指数(Pollution load index,PLI)、潜在生态风险指数(Potential ecological risk index,RI)和生态风险预警指数(Ecological risk warning index,I_(ER))对辣椒地土壤重金属污染及生态风险进行评价。结果表明:(1)焉耆盆地辣椒地土壤Cd、Cr、Ni、Pb和Zn含量的平均值分别超出新疆灌耕土背景值的1.65、1.40、1.32、3.21、6.42倍。辣椒地土壤Pb和Zn呈现重度污染,Cd、Cr和Ni轻度污染,As、Mn和Cu无污染。(2)土壤PLI平均值为1.40,呈现轻度污染。各重金属元素单项生态风险指数从大到小依次为:Cd、Ni、As、Cu、Pb、Cr、Zn。土壤RI平均值为18.40,属于轻微生态风险态势,IER平均值为-4.78,属于无警态势;博湖县辣椒地污染水平、潜在生态风险程度与生态风险预警等级最高,焉耆县污染水平、潜在生态风险程度与生态风险预警等级最低。(3)辣椒地土壤As、Cd、Pb与Zn主要受到人类活动的影响,Cr、Cu、Mn和Ni主要受到土壤地球化学作用的控制。Cd是焉耆盆地辣椒地生态风险等级最高的重金属元素,研究区农业生产过程中要防范Cd的污染风险。  相似文献   

4.
贵州兴仁煤矿区农田土壤重金属化学形态及风险评估   总被引:2,自引:0,他引:2  
为了解煤矿区周边农田土壤重金属污染状况,采集了贵州省兴仁县某典型煤矿区农田土壤样品64份,测定了土样中重金属(As、Cr、Pb、Zn、Cd、Hg、Cu、Ni)总量及各形态含量,采用单因子指数法、潜在生态风险指数法(Hkanson法)和风险评估编码法(RAC)对研究区主要土壤利用类型(水稻土、薏米地、植烟土和菜园土)中重金属进行潜在生态风险评估和环境风险评价.结果表明: 不同利用类型土壤中重金属含量除Zn外,其他元素均明显超过贵州省背景值.单因子指数法评价结果表明,As、Pb、Hg和Cu污染较为严重,均属重度污染.形态分析表明,土壤中重金属形态构成差异明显,酸可提取态As、酸可提取态Cd所占比例较高;Cr、Zn、Cu、Ni主要以残渣态为主;Pb主要以可还原态和残渣态为主;而Hg的酸可提取态、可还原态、可氧化态均占有相当比例,三者之和大于55%.重金属可利用度大小顺序为:As(63.6%)>Hg(57.3%)>Cd(56.4%)>Pb(52.5%)>Cu(45.7%)>Zn(32.8%)>Ni(26.2%)>Cr(13.2%).潜在生态风险指数表明,各类型土壤潜在生态风险(RI)〖JP2〗为:菜园土(505.19)>薏米地(486.06)>植烟土(475.33)>水稻土(446.86),均处于较高风险.风险评估编码法结果显示,As在水稻土、薏米地及植烟土中均处于高风险,在菜园土中处于中等风险;Cd、Hg均处于中等风险,Cr、Pb、Zn、Cu和Ni均处于低风险.因此,对该区域农田土壤进行管控时应重点考虑As、Cd和Hg污染.  相似文献   

5.
This paper reports the results of desorption experiments of cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) from some contaminated calcareous soils under four electrolyte types (CaCl2, MgCl2, NaCl and Na2SO4) with different electrolyte concentrations (0.5, 4 and 10 mM). Among electrolytes, CaCl2 significantly released more metals from soils. There was a negative relationship between total Cu and Zn content and percentage of Cu and Zn released (average of electrolyte concentrations) using CaCl2 solution, indicating a higher Cu and Zn released when their total content was low. Generally, Cd, Cu, and Zn speciation was affected by both type of electrolytes and their concentrations, whereas Ni speciation stayed mostly stable and was almost unaffected by applied solutions. It can be suggested that beside competition with cations, chloro-complexation is important parameter in Cd release, while CuOH+, and to some extent ZnOH+ are important species affecting release of Cu and Zn. The distribution coefficient (Kd) values for each metals greatly varied with the types of electrolytes and electrolyte concentration. On the basis of average percentage of metal released under different electrolytes and concentrations the following sequences was found: Cd > Cu > Ni > Zn. The results are important in understanding the mobility of metals under different solutions and indicating that, Cd and Zn soils may pose a higher and lower mobility and ecological risk in contaminated calcareous soils, respectively.  相似文献   

6.
Summary This paper reviews the evidence for impacts of metals on the growth of selected plants and on the effects of metals on soil microbial activity and soil fertility in the long-term. Less is known about adverse long-term effects of metals on soil microorganisms than on crop yields and metal uptake. This is not surprising, since the effects of metals added to soils in sewage sludge are difficult to assess, and few long-term experiments exist. Controlled field experiments with sewage sludges exist in the UK, Sweden, Germany and the USA and the data presented here are from these long-term field experiments only. Microbial activity and populations of cyanobacteria,Rhizobium leguminosarum bv.trifolii, mycorrhizae and the total microbial biomass have been adversely affected by metal concentrations which, in some cases, are below the European Community's maximum allowable concentration limits for metals in sludge-treated soils. For example, N2-fixation by free living heterotrophic bacteria was found to be inhibited at soil metal concentrations of (mg kg–1): 127 Zn, 37 Cu, 21 Ni, 3.4 Cd, 52 Cr and 71 Pb. N2-fixation by free-living cyanobacteria was reduced by 50% at metal concentrations of (mg kg–1): 114 Zn, 33 Cu, 17 Ni, 2.9 Cd, 80 Cr and 40 Pb.Rhizobium leguminosarum bv.trifolii numbers decreased by several orders of magnitude at soil metal concentrations of (mg kg–1): 130–200 Zn, 27–48 Cu, 11–15 Ni, and 0.8–1.0 Cd. Soil texture and pH were found to influence the concentrations at which toxicity occurred to both microorganisms and plants. Higher pH, and increased contents of clay and organic carbon reduced metal toxicity considerably. The evidence suggests that adverse effects on soil microbial parameters were generally found at surpringly modest concentrations of metals in soils. It is concluded that prevention of adverse effects on soil microbial processes and ultimately soil fertility, should be a factor which influences soil protection legislation.  相似文献   

7.
Concentration and distribution of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) were determined in 26 soil profiles (n = 78) of northern Kentucky in response to environmental concerns about increasing anthropogenic inputs in a fast-paced urbanizing area. The selected sites represent alluvial, glacial till or residual soils that have not received any biosolid- or industrial-waste applications. Mean concentrations of Zn (53.8 mg kg?1) and Ni (25.9 mg kg?1) were the highest in the soil profile, whereas Cd (0.21 mg kg?1) was present only in trace amounts. All metals were within the low to middle range of baseline concentrations reported for US soils, suggesting minimal anthropogenic inputs. The distribution of Cu, Cr, Ni, and Zn increased with soil depth, whereas Cd and Pb concentrations were unaffected throughout the soil profile. Alluvial soils had the highest overall metal accumulations, particularly in surface soil horizons, indicating potential metal enrichment through depositional processes. The presence of a fragipan horizon or depth to bedrock did not significantly affect metal retention. Single correlation and multiple regression analyses indicated OM and pH as the most influential soil parameters for metal retention, followed by cation exchange capacity (CEC) and CEC/clay. Single correlations among metals suggested strong covariance of Zn with most metals throughout the soil profile, but weaker for Pb and Ni.  相似文献   

8.
We studied the distribution of seven heavy metals and As in typical municipal greenbelt roadside soils in Pudong New District, Shanghai, China. As and Ni showed no significant accumulation compared with the background values of the local soils, but there was strong evidence of accumulation of Cd, Cr, Cu, Hg, Pb and Zn in the roadside soils. However, only Zn and Cd contents were higher than the pollution thresholds of the Chinese National Soil Quality standard. The concentrations of heavy metal(loid)s in the soils were significantly affected by the length of time since the roads were constructed. Soils from areas adjacent to an older road had higher levels of Cu, Pb, Cd and Zn. In terms of spatial distribution, more Cd, Cu, Pb and Zn were found in the soil from the green areas of median between carriageways than from those of the roadside verges. Vertical distribution analysis shows that the contents of Pb, Cd, Cu and Zn had maximum values in the topsoil and were substantially lower in the deeper layers of the soil profile. Moreover, correlation analysis reveals that these four heavy metals originated from the same pollution sources and their contents were directly associated with the traffic density.  相似文献   

9.
Copper,Lead, Cadmium,and Zinc Sorption By Waterlogged and Air-Dry Soil   总被引:1,自引:0,他引:1  
Competitive sorption of copper (Cu), lead (Pb), cadmium (Cd), and zinc (Zn) was studied in three soils of contrasting chemical and physical properties under air-dry and waterlogged conditions. Competitive sorption was determined using the standard batch technique using six solutions, each with Cu, Pb, Cd, and Zn concentrations of approximately 0, 2.5, 5, 10, 20, and 50?mg L?1Waterlogged soils tended to sorb higher amounts of added Cu, Pb, Zn and Cd relative to soils in the air-dry condition; however, this increase in sorption was generally not statistically (p<0.05) significant. The magnitude of sorption under both waterlogged and air-dry conditions was affected by the type and amount of soil materials involved in metal sorption processes, and competition between other metals for the sorption sites. Metal sorption was closely correlated with soil properties such as cation exchange capacity, organic carbon, and Fe and Mn hydrous oxides. Exchangeable Al may have markedly reduced metal sorption due to its strong affinity for the sorption sites, while increases in exchangeable Mn may have enhanced Zn and Cd sorption. Heavy metal sorption was best described as a combination of both specific and nonspecific interactions. The extractability of Cu, Pb, Cd, and Zn under waterlogged and air-dry conditions was also studied. Three solutions containing these metals were mixed with each soil to achieve a final concentration of 0, 50, and 500?mg kg?1. Each soil was extracted every 7 days using 1?M MgCl2 (pH 7) to determine metal extractability. Metal extractability initially decreased then increased due to waterlogging. The increased extractability of added metals was closely related to increased solubility of Fe and Mn suggesting that dissolution of Fe and Mn, oxides under reducing conditions caused a release of previously sorbed Cu, Pb, Cd, and Zn.  相似文献   

10.
To understand the effect of intense human activities in suburbs on environmental quality, we obtained 758 measurements of the heavy metals in certain farmland soils of the Beijing suburbs. Multivariate statistical analysis and geostatistical analysis were used to conduct a basic analysis of the heavy metal concentrations, the distribution characteristics and the sources of pollution of the farmland soils in these suburbs. The results showed the presence of eight heavy metals in the agricultural soils at levels exceeding the background values for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. In particular, all the measured Cr concentrations exceeded the background value, while As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn were present at 1.13, 1.68, 1.95, 1.43, 1.63, 0.79, 0.92 and 1.36 times their background values, respectively. The results of correlation, factor and spatial structure analyses showed that Cd, Cu, Pb and Zn were strongly homologous, whereas Cr and Hg showed a degree of heterogeneity. The analysis further indicated that in addition to natural factors, Cd, Cu, Pb and Zn in the soil were mainly associated with distribution from road traffic and land use status. Different agricultural production measures in the various areas were also important factors that affected the spatial distribution of the soil Cr concentration. The major sources of Hg pollution were landfills for industrial waste and urban domestic garbage, while the spatial distribution of As was more likely to be a result of composite pollution. The regional distribution of the heavy metals indicated that except for Cr and Hg, the high heavy metal levels occurred in districts and counties with higher organic matter concentrations, such as the northwestern and southeastern suburbs of Beijing. There was no significant Ni pollution in the agricultural soils of the Beijing suburbs.  相似文献   

11.
Heavy metal contamination of agricultural soils resulting from rapid industrialization and urbanization is of great concern because of potential health risk due to dietary intake of contaminated vegetables. The present study aims to evaluate the status of heavy metals contamination of agricultural soils and food crops around an urban-industrial region in India. Transfer factor values of Cu, Cr, Pb, Cd, Zn, and Ni from soil to vegetable was estimated. The mean heavy metal concentrations (mg/kg) in agricultural soils (Cu: 17.8, Cr: 27.3, Pb: 29.8, Cd: 0.43, Zn: 87, Mn: 306.6, Fe: 16984, and Ni: 53.8) were within allowable concentrations for Indian agricultural soil. The concentrations of Pb, Cd, Zn, and Ni in crops/vegetables exceeded the World Health Organization/Food and Agriculture Organization safe limits. Relative orders of transfer of metals from soil to edible parts of the crops/vegetables were Cd > Pb > Ni > Zn > Cu > Cr. The enrichment factors of heavy metals in soil indicated minor to moderately severe enrichment for Pb, Cd, and Ni; minor to moderate enrichment for Zn; no enrichment to minor enrichment for Mn; and no enrichment to moderate enrichment for Cu at different sites. Ecological risk index of soil showed considerable contamination in one of the wastewater irrigated sites.  相似文献   

12.
A thymidine incorporation technique was used to determine the tolerance of a soil bacterial community to Cu, Cd, Zn, Ni, and Pb. An agricultural soil was artificially contaminated in our laboratory with individual metals at three different concentrations, and the results were compared with the results obtained by using the plate count technique. Thymidine incorporation was found to be a simple and rapid method for measuring tolerance. Data obtained by this technique were very reproducible. A linear relationship was found between changes in community tolerance levels obtained by the thymidine incorporation and plate count techniques (r = 0.732, P < 0.001). An increase in tolerance to the metal added to soil was observed for the bacterial community obtained from each polluted soil compared with the community obtained from unpolluted soil. The only exception was when Pb was added; no indication of Pb tolerance was found. An increase in the tolerance to metals other than the metal originally added to soil was also observed, indicating that there was multiple heavy metal tolerance at the community level. Thus, Cu pollution, in addition to increasing tolerance to Cu, also induced tolerance to Zn, Cd, and Ni. Zn and Cd pollution increased community tolerance to all five metals. Ni amendment increased tolerance to Ni the most but also increased community tolerance to Zn and, to lesser degrees, increased community tolerance to Pb and Cd. In soils polluted with Pb increased tolerance to other metals was found in the following order: Ni > Cd > Zn > Cu. We found significant positive relationships between changes in Cd, Zn, and Pb tolerance and, to a lesser degree, between changes in Pb and Ni tolerance when all metals and amendment levels were compared. The magnitude of the increase in heavy metal tolerance was found to be linearly related to the logarithm of the metal concentration added to the soil. Threshold tolerance concentrations were estimated from these linear relationships, and changes in tolerance could be detected at levels of soil contamination similar to those reported previously to result in changes in the phospholipid fatty acid pattern (Å. Frostegård, A. Tunlid, and E. Bååth, Appl. Environ. Microbiol. 59: 3605-3617, 1993).  相似文献   

13.
Agricultural soil irrigated with industrial wastewater (more than two decades) analysed for heavy metals revealed high levels of Fe, Cr, Cu, Zn, Ni and Cd. Out of a total of 40 bacterial isolates obtained from these soils, 17 belonged to the family enterobacteriaceae and 10 were Pseudomonas spp. A maximum MIC of 200 for Cd, 400 for Zn and Cu, 800 for Ni, and 1600 microg/ml for Pb was observed. Biosorption of Ni and Cd studies over a range of metal ion concentrations with Escherichia coli WS11 both in single and bi-metal systems showed that the adsorption of Cd and Ni was dependent on the concentrations and followed the Freundlich adsorption isotherm. The biosorption of Ni increased from 6.96 to 55.31 mg/g of cells, and Cd from 4.96 to 45.37 mg/g of cells at a concentration ranging from 50 to 400 microg/ml after 2h of incubation in a single metal solution. A further increase in incubation time had no significant effect on the biosorption of metals.  相似文献   

14.
朱立安  曾清苹  柳勇  柯欢  程炯  张会化  李俊杰 《生态学报》2020,40(13):4659-4669
富集重金属的枯落物分解可能提高重金属暴露率,增加人体接触健康风险。为了解南方城市土壤重金属在森林生态系统中的分布及流转情况,通过调查研究了佛山市8个典型森林群落土壤及枯落物重金属含量,分析了各森林群落枯落物对不同重金属的富集效应及重金属随枯落物回归土壤流通量。结果表明:1)城市森林各土壤重金属含量在不同典型群落间差异显著(P<0.05),差异最大为Pb、Cr、Zn,As、Cu、Ni次之,Hg、Cd最小;土层深度(0-20,20-40,40-60 cm)对重金属含量影响显著(P<0.05),差异最大为Cd、Hg,其次为As、Cu,最小为Zn、Ni、Pb、Cr。整体上,Cd、Hg、As、Pb、Zn在0-20 cm最高,表层富集特征明显,Cr和Ni在40-60 cm最高。2)8个森林群落中阴香-白楸-醉香含笑群落(CMMC)枯落物对8种重金属的综合富集系数(TBCF,66.76)最高,其中以Cd的富集效果最突出,富集系数为44.45,且对Pb、Cu、Zn也相对富集;最低的为黧蒴锥-香椿-樟树群落(CTCC),综合富集系数(TBCF)为8.09,仅对Cd、Cr、Cu相对富集,对其余重金属富集效应不明显。3)相关分析显示,群落重金属枯落物流通量与0-60 cm土壤重金属平均含量(Cr和Ni除外)无显著相关性。本研究对城市森林建设管理及筛选重金属富集植物及群落具有较强理论及实践意义。  相似文献   

15.
在综合考虑深圳市城市功能区分异特征的基础上,进行全市表层土壤系统采样,全面监测土壤表层8种重金属元素污染状况,分析不同重金属元素含量的统计学特征,探讨不同城市功能区对土壤表层重金属污染的影响,采用内梅罗指数和潜在生态危害指数评估不同重金属元素和不同城市功能区的生态风险水平,分别进行基于两种方法的全市重金属污染生态风险分区。结果表明: 1)深圳市土壤表层的Mn、Ni、Cr和Pb 4种元素受人为活动的影响程度较低,Cd、Zn、Cu和As 4类元素受人为活动影响较大。地表环境约束因素背景下的高强度城市化和工业化过程,是各种重金属污染区域分异和功能区分异的决定性因素。2)深圳市土壤重金属污染风险较高的重金属元素为Cd、Zn、Cu和Pb,特别是Pb污染问题尤为突出,必须加强管控工作。深圳市总体土壤表层重金属污染风险水平高于国内相关城市,需要引起足够重视。3)内梅罗指数法和潜在生态危害指数法的侧重点不同,在单一重金属元素风险判断、不同城市功能区生态风险的总体评价,以及市域土壤重金属污染生态风险分级评价方面结果差异较大,组合使用效果更好。  相似文献   

16.
The fractionation and distribution with depth of Cd, Cr, Cu, Ni, Pb, and Zn in 26 soils of Northern Kentucky were determined through a sequential extraction procedure in response to environmental concerns about increasing anthropogenic inputs in a fast-paced, urbanizing area. The selected sites have not received any biosolid- or industrial-waste applications. Average total concentrations per metal in soil profiles derived from alluvial, glacial till, and residual materials ranged from 0.43 to 56.00 mg kg?1 in the sequence Zn > Ni > Pb > Cr > Cu > Cd, suggesting relatively small anthropogenic inputs. The distribution of Cu, Cr, Ni, and Zn increased with soil depth, whereas Cd and Pb remained stable, indicating a strong geological or pedogenic influence. Residual forms were most important for the retention of Cu, Zn, and Ni. Cadmium and Pb exhibited a strong affinity for the Fe-Mn oxide fraction, while Cr showed the strongest association with the organic fraction. In terms of metal mobility and toxicity potential inferred from metal concentrations in labile fractions, Cd posed the greatest risk, followed by Cr ~ Pb > Ni > Zn > Cu. Soil pH, OM, and clay content were the most important parameters explaining the partitioning of metals in labile and residual fractions, emphasizing the importance of metal fractionation in soil management decisions. Alluvial soils generally contained the highest total and labile metal concentrations, suggesting potential metal enrichment through anthropogenic additions and depositional processes. These environments exhibit the highest risk for metal mobilization due to drastic changes in redox conditions, which can destabilize existing metal retention pools.  相似文献   

17.
Heavy metals (Cd, Ni, Cu, Pb, and Zn) and total sulfur (TS) in both surficial sediments and adjacent floodplain topsoils of the Lean River catchment are investigated to comprehend the effects of flooding on heavy metals in soils, the evolution of the quality of sediments, and transfer of sediment metals. The results show that concentrations of metals except for Ni in soils are significantly correlated with those in sediments. At most upstream or downstream locations, sediment metal concentrations are found comparable to those in soils (sed/soil≈1). For Cu at locations close to the Dexing Copper Mine (DCM), flooding brought Cu-poor clays into the floodplain soil system and this leads to sed/soil<1, while at locations adjacent to the Yinshan Lead-zinc Mine (YLM), suspended solids containing high concentrations of iron and magnesium oxide absorb large quantities of dissolved Cd, Pb, and Zn and deposit on the floodplain during flooding (sed/soil>1). In spite of an elevated Cu production of the DCM, a significant decrease in sediment Cu concentrations is found as compared to those 10 years ago. The decrease may be due to the elevated Cu ore utilizing efficiency and the use of a new modern tailing pool. At the location closest to the Yinshan Lead-zinc Mine (YLM), Pb and Zn concentrations increased in recent sediments. In the Lean River, metal contamination in sediments cannot reach the location 60 km downstream of their sources in 2005.  相似文献   

18.
A total of 195 farmland soil samples were collected in Yanqi Basin, Xinjiang, northwest China, and the concentrations of As, Cd, Cr, Cu, Ni, Pb, and Zn were analyzed for their concentrations and pollution levels using the Nemerow comprehensive index. The health risk assessment model introduced by USEPA was utilized to evaluate the human health risks of heavy metals. Results indicated that the average concentrations of these seven metals were lower than the allowed soil environmental quality standards of China, while the average concentrations of Cd, Cr, Ni, Pb and Zn exceeded the background values of irrigation soils in Xinjiang. The average contamination factor (CF) for Pb indicated the heavy pollution, whereas the CF for Cd, Zn, Ni, Cu and Cr indicated the moderate pollution. The average PLI of heavy metals indicated the low pollution. The non-carcinogenic hazard index were below the threshold values, and the total carcinogenic risks due to As and Cr were within the acceptable range for both children and adults. As and Pb were the main non-carcinogenic factors, while As was the main carcinogenic factor in the study area. Special attentions should be paid to these priority control metals in order to target the lowest threats to human health.  相似文献   

19.
某农药工业园区周边土壤重金属含量与风险评价   总被引:11,自引:0,他引:11  
Shi NN  Ding YF  Zhao XF  Wang QS 《应用生态学报》2010,21(7):1835-1843
以苏南某农药工业园区周边30km2区域为研究区,采用同心圆法采集土壤样品183个,分析了农药工业园区周边土壤Cd、Cr、Cu、Ni、Pb、Zn、Hg和As8种重金属含量、空间变异性、来源及潜在风险.结果表明:以自然背景值为评价标准,研究区表层土壤Hg、Cu、Cd和Pb平均含量超过自然背景值,其中Hg和Cu含量最高;以国标二级标准为评价标准,土壤Cd、Cr、Ni、Pb、Zn、As6种重金属的单项污染指数平均值均小于1,Hg和Cu分别为1.59和1.05.在农药工业园区周边土壤重金属污染较重的东南方向和西北方向,随着与园区距离的增加,土壤Cd、Ni、Pb、Cr、As、Hg、Zn和Cu含量先上升、后下降、再趋于平稳.通过分析农药工业园区周边土壤重金属综合污染指数发现,距离园区约200~1000m周边土壤污染的风险较大,而1000m以外逐渐达到安全范围.利用地统计学和GIS相结合进行分析发现,8种重金属污染指数有明显的空间变异.依据相关分析与主成分分析结果推测,Zn、Ni、Cr、Pb和As主要来源于成土母质,而Hg、Cu和Cd主要与人类活动有关.  相似文献   

20.
The total and DTPA-extractable concentrations of Pb, Ni, Zn, Cu, Cr and Cd were measured in a calcareous soil amended with different doses of sewage sludge under field conditions. The same metals were also measured in the roots and leaves of Dactylis glomerata at the end of the first vegetative period after the sludge was added. The root concentrations of all the metals were unrelated to their concentrations in the soil. Leaf concentrations of Zn and Cr correlated with total (Zn) and DTPA-extractable (Zn and Cr) concentrations in the soil. DTPA extraction did not appear to be very useful for evaluating the bioavailability of metals in this kind of soil as it gave very low correlation coefficients with leaf content (r = 0.684, P = 0.0049 for Zn and r = 0.557, P = 0.0249 for Cr). Concentrations of Pb, Ni, Cu, and Cd in roots and leaves of Dactylis glomerata were unrelated to the total or DTPA-extractable concentrations in the sludge-amended soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号