首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supplementation with CaCl2·2H2O (50 mg l−1) or CuSO4·5H2O (10 mg l−1) improved mannitol production by Candida magnoliae by 14.5 and 18.6% (25 and 32 g/L), respectively. When used in combination, they acted synergistically: Ca2+ decreased the intracellular concentration of mannitol 30%, whereas Cu2+ increased the intracellular activity of mannitol dehydrogenase 1.6-times more than control. Ca2+ probably works by altering the permeability of cells to mannitol, whereas, Cu2+ increases the activity of an enzyme responsible for mannitol biosynthesis.  相似文献   

2.
The production of erythritol and the erythritol yield from glucose by Torula sp. were improved, in increasing order, by supplementing with 10 mg MnSO44H2O l–1, 2 mg CuSO45H2O l–1, and both 10 mg MnSO44H2O l–1 and 2 mg CuSO45H2O l–1. Mn2+ decreased the intracellular concentration of erythritol, whereas Cu2+ increased the activity of erythrose reductase in cells. These results suggest that Mn2+ altered the permeability of cells, whereas Cu2+ increased the activity of erythrose reductase in cells.  相似文献   

3.
The biomass and concentration of bioactive quinone methide-type diterpenes in hairy roots of Salvia austriaca were determined and compared with levels of these metabolites in roots of field-grown plants. The cultures were maintained in shake flasks and a nutrient sprinkle bioreactor. Diterpene production was more efficient in the shake flask root culture than the bioreactor one. Biomass and diterpene production within the shake flask culture was evaluated using Schenk and Hildebrandt (SH), Gamborg (B5), and woody plant medium (WPM), with both full- and half-strength macro and micronutrient concentrations (1/2 SH, 1/2 B5, and 1/2 WPM). Among the tested media, SH medium proved to be most effective for biomass and diterpene production. In this medium, the transformed roots accumulated the levels of taxodone (3.89?mg?g?1 DW; equivalent to 63.3?mg?L?1), taxodione (1.15?mg?g?1 DW; equivalent to 17.4?mg?L?1), 15-deoxy-fuerstione (2.15?mg?g?1 DW; equivalent to 32.5?mg?L?1), and 7-(2′-oxohexyl)-taxodione (0.076?mg?g?1 DW; equivalent to 1.1?mg?L?1). Three diterpenes were also detected in the roots of S. austriaca intact plants, but their concentrations were lower than those in hairy root culture. No 7-(2′-oxohexyl)-taxodione was found in the roots of field-grown plants. The hairy roots were able to maintain high metabolite levels even for 6 years of cultivation. Taxodone, taxodione, 15-deoxy-fuerstione, and 7-(2′-oxohexyl)-taxodione were tested for in vitro activity against Trypanosoma brucei rhodesiense, T. cruzi, and Plasmodium falciparum and their cytotoxicity was determined using L6 cells. Among these compounds, taxodione was the most active against T. brucei rhodesiense [IC50?=?0.05?µM with high selectivity, selectivity index (SI)?=?38]. Taxodione was found to inhibit the growth of P. falciparum and T. cruzi by 50% at respective concentrations of 1.9 and 7.1?µM (SI values of 1.0 and 0.27). Other diterpenoids demonstrated weaker activity against tested parasites (IC50 values ranging from 0.62 to 194.7?µM) and lower selectivity (SI value ranged from 0.4 to 5.0).  相似文献   

4.
An amylase inhibitor-producing microorganism was identified as a subspecies of Strepto- myces diastaticus from morphological and physiological studies and was named Streptomyces diastaticus subsp. amylostaticus No. 2476.

When this strain was aerobically cultured in a shaking flask containing 100 ml of medium consisting of 4% corn starch, 2% soy bean flake extract, 0.3 % NaCl, 0.1 % K2HPO4, 0.05% MgSO4·7H2O, 0.001% FeS04 · 7H2O, 0.0001% CuSO4-5H2O, 0.0001% ZnSO4·7H2O, and 0.0001% MnS04 nH2O (pH 7.0) at 30°C, the highest inhibitory activity was obtained after 70 ~ 80 hr of cultivation.

This amylase inhibitor (S-AI) had inhibitory activity on α-amylases and glucoamylase, but not on β-amylases and pullulanase.  相似文献   

5.
Itaconic acid (IA), a building block platform chemical, is produced industrially by Aspergillus terreus utilizing glucose. Lignocellulosic biomass can serve as a low cost source of sugars for IA production. However, the fungus could not produce IA from dilute acid pretreated and enzymatically saccharified wheat straw hydrolyzate even at 100-fold dilution. Furfural, hydroxymethyl furfural and acetic acid were inhibitory, as is typical, but Mn2+ was particularly problematic for IA production. It was present in the hydrolyzate at a level that was 230 times over the inhibitory limit (50 ppb). Recently, it was found that PO43− limitation decreased the inhibitory effect of Mn2+ on IA production. In the present study, a novel medium was developed for production of IA by varying PO43−, Fe3+ and Cu2+ concentrations using response surface methodology, which alleviated the strong inhibitory effect of Mn2+. The new medium contained 0.08 g KH2PO4, 3 g NH4NO3, 1 g MgSO4·7H2O, 5 g CaCl2·2 H2O, 0.83 mg FeCl3·6H2O, 8 mg ZnSO4·7H2O, and 45 mg CuSO4·5H2O per liter. The fungus was able to produce IA very well in the presence of Mn2+ up to 100 ppm in the medium. This medium will be extremely useful for IA production in the presence of Mn2+. This is the first report on the development of Mn2+ tolerant medium for IA production by A. terreus.  相似文献   

6.
In this study, the effects of carbon source, nitrogen source, and metal ions on cell growth and Bacillus aryabhattai β-amylase production in recombinant Brevibacillus choshinensis were investigated. The optimal medium for β-amylase production, containing glucose (7.5?g·L?1), pig bone peptone (40.0?g·L?1), Mg2+ (0.05?mol·L?1), and trace metal elements, was determined through single-factor experiments in shake flasks. When cultured in the optimized medium, the β-amylase yield reached 925.4?U mL?1, which was 7.2-fold higher than that obtained in the initial medium. Besides, a modified feeding strategy was proposed and applied in a 3-L fermentor fed with glucose, which achieved a dry cell weight of 15.4?g L?1. Through this cultivation approached 30?°C with 0?g·L?1 initial glucose concentration, the maximum β-amylase activity reached 5371.8?U mL?1, which was 41.7-fold higher than that obtained with the initial medium in shake flask.  相似文献   

7.
以2年生金银花为试验材料,采用叶面喷施法,研究不同浓度的苯丙氨酸(Phe)、酪氨酸(Lyr)以及锌(Zn2+)、铜(Cu2+)对金银花生长发育和质量的影响。结果显示:(1)喷施不同浓度的Phe、Lyr以及Zn2+、Cu2+对叶面积无明显影响;不同处理的叶绿素含量随喷施次数的增加而出现不同程度的下降,喷施浓度适宜则有助于叶绿素的合成;喷施一定浓度的Phe、Lyr以及Zn2+、Cu2+可增加花蕾重量,如经1 000mg/g Phe处理后的花蕾鲜重与干重较对照增加了20.1%和51.4%。(2)不同浓度的Phe、Lyr可显著影响碳代谢,但对氮代谢影响不明显;Zn2+、Cu2+对碳氮代谢产物影响较明显,如喷施10mg/L的CuSO4及ZnSO4可提高可溶性糖及淀粉含量。(3)除Zn2+处理后的花蕾类黄酮含量显著低于对照外,其他处理较CK无显著差异;花蕾总黄酮含量均显著低于对照,但绿原酸含量均高于对照。(4)叶片中离子含量受喷施次数及浓度影响较明显,除30mg/L CuSO4处理外,其它处理的花蕾中Zn2+、Cu2+、Fe2+含量均显著低于对照。研究表明,在金银花的第一茬花抽枝初期喷施适宜浓度的Phe、Lyr(如1 000mg/g Phe、2 000mg/g Lyr)以及Zn2+、Cu2+(如50mg/L ZnSO4、10mg/L CuSO4)可改善金银花的生长发育,并提高产量和质量。  相似文献   

8.
The production of extracellular laccase by the Grammothele subargentea CLPS no. 436 strain in liquid cultures grown on a carbon-limited basal medium was significantly enhanced when culture conditions, including the addition of CuSO4·5H2O or veratryl alcohol, were consecutively optimized. A laccase activity as high as 1954.5 mU ml−1 of liquid medium was obtained under optimum conditions, which corresponded to non-agitated cultures supplemented with 0.6 mM CuSO4·5H2O. Veratryl alcohol at 1 mM was less effective than CuSO4·5H2O for increasing laccase activity levels; the supplementation of veratryl alcohol resulted only in maximum levels of 44 mU ml−1 in non-agitated cultures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
S-adenosyl-L-methionine (SAM) has important applications in many fields including chemical therapy and pharmaceutical industry. In this study, the recombinant Escherichia coli strain was constructed for effective production of SAM by introducing the SAM synthase gene (metK). This strain produced 34.5?mg/L of SAM in basic medium in shake flask. Yeast extract, pH, and loaded volume had a significant positive effect on the yield of SAM. Their optimal values were 35?g/L, 7.5, and 30?mL, respectively. The final conditions optimized were as follows: glucose 20, g/L; peptone, 40?g/L; yeast extract, 35?g/L; NaCl, 10?g/L; MgSO4, 1.2?g/L; L-methionine, 1?g/L; rotate speed, 220?rpm; loaded volume, 30?mL; inoculation, 1%; temperature, 37°C; and initial medium, pH 7.5. The recombinant strain produced 128.2?mg/L of SAM under the above conditions in shake flask. The production of SAM in a 5?L fermentor was also investigated. The maximal biomass of the recombinant strain was 60.4?g/L after the cells were cultured for 20?hr, and the highest yield of SAM was 300.9?mg/L after induction for 8?hr in a 5?L fermentor. This study provides a good foundation for the future production and use of SAM.  相似文献   

10.
Supplementation with CaCl22H2O (40 mg l–1) or CuSO45H2O (10 mg l–1) improved vancomycin production by Amycolatopsis orientalis by 12 and 11%, respectively; used in combination, they acted synergistically. Ca2+ decreased the intracellular concentration of vancomycin 36%, whereas Cu2+ increased the intracellular activity of TDP-glucose:aglycosylvancomycin glucosyltransferase 3 times more than control. Ca2+ probably works by altering the permeability of cells to vancomycin, whereas Cu2+ increases the activity of an enzyme responsible for vancomycin biosynthesis.  相似文献   

11.
Proteolytic Aeromonas caviae P-1-1 growing at wide-ranging pH (7.0–11.0) and moderate salinity (0–5% NaCl) was isolated from cattle shed of Thanjavur, India. It produced lipase, gelatinase, and polyhydroxybutyrate. Different culture conditions, incubation time, carbon and nitrogen sources, vitamins, amino acids, surfactants, and metal ions for optimal growth and protease production of P-1-1 were examined. Maximum protease (0.128?U/mL) production was achieved with 1% fructose, 1% yeast extract, 0.1% ammonium sulfate, 3% NaCl, 0.1% CaCl2?·?2H2O, 1% glycine, 0.1% vitamin E, and 0.1% Tween-40 at pH 8.0 after 42?hr of incubation at 37°C. It was active over broad range of pH (7.0–12.0), temperature (15–100°C), and salinity (0–9% NaCl) with optima at pH 10.0, 55°C, and 3% NaCl. It retained 65 and 48% activities at pH 12.0 and 100°C, respectively. Partially purified protease was highly stable (100%) within pH range 7.0–12.0 and salinities of 0–5% NaCl for 48?hr. Cu2+, Mn2+, Co2+, and Ca2+ did not inhibit its activity. Its stability at extreme pHs, temperatures, and in the presence of surfactants and commercial detergents suggests its possible application in laundry detergents. Partially purified protease was immobilized and reused. This is the first report of alkali-thermotolerant, surfactant–detergent-stable partially purified extracellular protease from A. caviae.  相似文献   

12.
The low functional microbial population density in the industrial bioleaching process has been a limiting factor for the high leaching efficiency, making the microbial cultivation and continuous inoculation an alternative for sustaining the microbial activity. In the present experiment, the defined mixed cultivation of Leptospirillum ferriphilum YSK, Sulfobacillus acidophilus TPY, Acidithiobacillus caldus S2, and Ferroplasma thermophilum L1 was evaluated and optimized by Statistical Methodology. Going through the Plackett–Burman experimental design, pH value, temperature, and c(MgSO4·7H2O) were considered as the most significant factors in the defined range. Then, the relationships were analyzed using the steepest ascent design, the central composite design, and finally the response surface methodology. It was suggested that the optimum parameters were pH 1.38, MgSO4·7H2O 0.552?g/L, temperature 44?°C, FeSO4·7H2O 40?g/L, sulfur 8?g/L, yeast 0.02% w/v, (NH4)2SO4 3g/L, K2HPO4 0.5g/L, KCl 0.1g/L, Ca(NO3)2 0.01?g/L, in which allowed total cell density of the microbial community to reach 7.63?×?108 cells/mL in the cultivation period. The lab experiments were routinely undertaken with the expectation that the L. ferriphilum YSK, S. acidophilus TPY, A. caldus S2, F. thermophilum L1 could rapid grown from initial cell density of 0.25?×?107 cells/mL to 2.82?×?108 cells/mL, 1.68?×?108 cells/mL, 2.76?×?108 cells/mL, 2.51?×?107 cells/mL, respectively in 58?h. It demonstrates a possibility to co-culture these microbes in a single reactor, providing an efficient way to regenerate of inoculation for biomining process.  相似文献   

13.
Both crude exo-biopolymers and mycelial biomass, produced by liquid culture of Cordyceps species, are believed to possess several potential health benefits. As a result of its known biological activities, Cordyceps militaris has been extensively characterized in regards to potential medicinal applications. However, optimized liquid culture conditions for enhanced polysaccharide productivity have yet to be developed, which is a necessary step for industrial applications. Therefore, in this study, the liquid culture conditions were optimized for maximal production of mycelial biomass and exo-polysaccharide (EPS) by C. militaris. The effects of medium composition, environmental factors, and C/N ratio were investigated. Among these variables 80 g, glucose; 10 g, yeast extract; 0.5 g, MgSO4·7H2O; and 0.5 g, KH2PO4 in 1 L distilled water were found to be the most suitable carbon, nitrogen, and mineral sources, respectively. The optimal temperature, initial pH, agitation, and aeration were determined to be 24°C, uncontrolled pH, 200 rpm, and 1.5 vvm, respectively. Under these optimal conditions, mycelial growth in shake flask cultures and 5 L jar bioreactors was 29.43 and 40.60 g/L, respectively, and polysaccharide production in shake flask cultures and 5 L jar bioreactors was 2.53 and 6.74 g/L, respectively.  相似文献   

14.
Optimization of the medium components which enhance sporulation of the two mating types of the fungus Blakeslea trispora ATCC 14271 and ATCC 14272 (a heterothallic Zygomycota producing carotene) was achieved with the aid of response surface methodology (RSM). Glucose, corn steep liquor, yeast extract, and ammonium sulfate were investigated as carbon and nitrogen sources in a basal medium. RSM was adopted to optimize the medium in order to obtain a good growth of the fungus as a prerequisite for enhanced sporulation. In the second step, the basal medium was supplemented with different trace elements which significantly affect sporulation (i.e. CuSO4·5H2O, FeCl3·6H2O, Co(NO3)2·6H2O, and MnCl2·4H2O). Central composite design proved to be valuable in optimizing a chemically defined solid medium for spore production of B. trispora. The composition of the new solid medium to enhance spore production by B. trispora (ATCC 14271) is as follows (per liter): 7.5 g glucose, 3.2 g corn steep liquor, 1.7 g yeast extract, 4.1 g ammonium sulfate, 6 mg CuSO4·5H2O, 276 mg FeCl3·6H2O, 2 mg Co(NO3)2·6H2O, and 20 g agar (pH 6.0). Practical validation of this optimum medium gave spore number of 1.2 × 108 spores/dish which is 77% higher than that produced in Potato Dextrose Agar (PDA). In the case of B. trispora (ATCC 14272) the new solid substrate for enhanced sporulation consists of (per l) 6.4 g glucose, 3.3 g corn steep liquor, 1.4 g yeast extract, 4.3 g ammonium sulfate, 264 mg CuSO4·5H2O, 485 mg FeCl3·6H2O, 223 mg MnCl2.4H2O, and 20 g agar (pH 6.0). Spore numbers of 2 × 107 spores/dish were obtained on the new medium by B. trispora (ATCC 14272), which is 95% higher than that produced on PDA. The results corroborated the validity and the effectiveness of the models. The new media considerably improved sporulation of both strains of B. trispora compared to the production of spores on PDA, which is the medium usually used for sporulation of the fungus.  相似文献   

15.
Sea urchins have elaborated multiple defenses to assure monospermic fertilization. In this work, we have concentrated on a study of the mechanism(s) by which hydrogen peroxide (H2O2) prevents polyspermy in Arbacia punctulata. We found that it is not H2O2 but probably hypochlorous acid/hypochlorite (HOCl/OCl?) derived from H2O2 that is toxic to the supernumerary sperm. The spermicidal activity of H2O2 is potentiated by at least one order of magnitude by cupric ions (Cu2+). This increased toxicity is not due to the formation of hydroxyl radicals (·OH) because ·OH scavengers did not counteract the activity of Cu2+. More-over, substitution of Cu2+ by ferrous ions (Fe2+), which are known to cause formation of ·OH from H2O2, had no effect on fertilization even at 102?103 times higher concentrations. In contrast, 3-amino-1,2,4-triazole (AT), an HOCl/OCl? scavenger, totally reversed the toxic effects of Cu2+. Furthermore, we found that HOCl/OCl? is generated in solutions of H2O2 and Cu2+ in the presence of 0.5 M NaCl and that its accumulation is abolished by AT. Thus it is possible that the antifertility properties of copper are due to its ability to mediate formation of HOCl/OCl?. HOCl/OCl? generated by Cu2+ from H2O2 and Cl?, a low concentration of exogenously added HOCl/OCl?, or increased concentrations of H2O2 has similar inhibitory effects on the fertilization process in sea urchins. Therefore, we suggest that polyspermy is prevented by the action of a myeloperoxidase that affects the formation of HOCl/OCl? from the Cl? present in sea water through reaction with H2O2 generated by the newly fertilized egg.  相似文献   

16.
Four complexes [Pd(L)(bipy)Cl]·4H2O (1), [Pd(L)(phen)Cl]·4H2O (2), [Pt(L)(bipy)Cl]·4H2O (3), and [Pt(L)(phen)Cl]·4H2O (4), where L = quinolinic acid, bipy = 2,2’-bipyridyl, and phen = 1,10-phenanthroline, have been synthesized and characterized using IR, 1H NMR, elemental analysis, and single-crystal X-ray diffractometry. The binding of the complexes to FS-DNA was investigated by electronic absorption titration and fluorescence spectroscopy. The results indicate that the complexes bind to FS-DNA in an intercalative mode and the intrinsic binding constants K of the title complexes with FS-DNA are about 3.5?×?104 M?1, 3.9?×?104 M?1, 6.1?×?104 M?1, and 1.4?×?105 M?1, respectively. Also, the four complexes bind to DNA with different binding affinities, in descending order: complex 4, complex 3, complex 2, complex 1. Gel electrophoresis assay demonstrated the ability of the Pt(II) complexes to cleave pBR322 plasmid DNA.  相似文献   

17.
Microbial fermentation of citrinin-free Monascus pigments is in favor in the development of food industry. This study investigated the influences of carbon source, nitrogen source, and mineral salts on the cell growth, monascin (MS), and citrinin (CT) production in Monascus M9. A culture medium composition was established for maximizing the production of citrinin-free MS in submerged culture, as follows: 50?g/L Japonica rice powder, 20?g/L NH4NO3, 3?g/L NaNO3, 1.5?g/L KH2PO4, 1?g/L MgSO4?·?7H2O, 0.2?g/L MnSO4. Under these conditions, no CT was detectable by high performance liquid chromatography. The yield of MS reached 14.11?mg/g, improving approximately 30% compared with before optimization.  相似文献   

18.
Tissue culture data is non-linear in nature. Decision tree algorithms stand out in revealing the non-linear interactions and relationships between the predictors and responses. Classification and regression tree (CART), chi squared automatic interaction detector (CHAID) and exhaustive CHAID are the common decision tree algorithms. These three models were employed to predict and optimize the effect of minor mineral nutrients on shoot cultures of Corylus avellana L. cultivars. H3BO3, CuSO4·5H2O, MnSO4·H2O, Na2MoO4·2H2O and Zn(NO3)2·6H2O were tested in a range of 0.5?×?to 4?×?Driver and Kuniyuki (DKW) medium within a RSM optimal design. NiSO4·6H2O was also an input within the design with varying levels of 0 to 6 µM. Shoot quality and length were affected by genotype, B and Mo amounts. Multiplication rate depended on genotype, B, Zn and Cu levels. Callus formation was affected by genotype and B. Leaf size depended on genotype, Zn and Mn concentrations. Cu was a significant predictor of leaf color and Ni slightly improved SPAD readings (chlorophyll content). CART in general outperformed CHAID and exhaustive CHAID in terms of the predictive performance. Both CHAID and exhaustive CHAID failed to generate a tree model for a leaf size response. The optimal minor nutrients for hazelnuts based on the predictions of the CART algorithm were suggested to be: B 2.3?×?DKW, Cu 0.5×, Mn 0.5×, 2?×?Mo and Zn 2×.  相似文献   

19.
Lovastatin, an inhibitor of HMG-CoA reductase, was produced by submerged fermentation using Monascus purpureus MTCC 369. Five nutritional parameters screened using Plackett–Burman experimental design were optimized by Box–Behnken factorial design of response surface methodology for lovastatin production in shake flask cultures. Maximum lovastatin production of 351 mg/l were predicted in medium containing 29.59 g/l dextrose, 3.86 g/l NH4Cl, 1.73 g/l KH2PO4, 0.86 g/l MgSO4·7H2O, and 0.19 g/l MnSO4·H2O using response surface plots and point prediction tool of DESIGN EXPERT 7.0 (Statease, USA) software.  相似文献   

20.
An asymmetric salamo‐based probe molecule ( H 2 L ) was synthesized and characterized structurally. When DMF/H2O (9:1) was used as the solvent, it was shown probe H 2 L has high sensitivity to Cu2+. Using high‐resolution mass spectrometry and theoretical calculation, it was found that probe H 2 L could form a more stable complex (1:1) with Cu2+, the minimum limit of detection (LOD) of H 2 L for Cu2+ was calculated as 9.95 × 10?8 M. In addition, probe H 2 L could also be used to identify B4O72? under the same detection conditions and the minimum LOD of H 2 L for B4O72? was calculated as 4.98 × 10?7 M. At the same time, density functional theory theoretical calculation further proved the flexibility of probe H 2 L . Through the action of EDTA, probe H 2 L had a cyclic ability to recognize Cu2+, and showed a better response in the physiological pH range; probe H 2 L had the characteristics of fast recognition speed and high efficiency. In addition, with probe H 2 L test paper for Cu2+ and B4O72?, the effect was more obvious. Meanwhile, probe H 2 L can be used to quantitatively detect Cu2+ in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号