首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical conjugation of the influenza peptide antigen M2E to different variants of virus-like particles (VLPs) was investigated. Wild-type cowpea chlorotic mottle virus (CCMV) and two novel cysteine mutants of CCMV, all expressed in Pseudomonas fluorescens, were utilized in this study. Two different conjugation schemes, primary amine-directed and cysteine-directed, were tested and compared. Both strategies were successfully used to attach M2E peptides to the surface of these VLPs. Ultimately, the cysteine-directed conjugation strategy using the CCMV cysteine mutant particles displayed key advantages over the primary amine-directed strategy.  相似文献   

2.
The strength of attraction between capsid proteins (CPs) of cowpea chlorotic mottle virus (CCMV) is controlled by the solution pH. Additionally, the strength of attraction between CP and the single-stranded RNA viral genome is controlled by ionic strength. By exploiting these properties, we are able to control and monitor the in vitro co-assembly of CCMV CP and single-stranded RNA as a function of the strength of CP–CP and CP–RNA attractions. Using the techniques of velocity sedimentation and electron microscopy, we find that the successful assembly of nuclease-resistant virus-like particles (VLPs) depends delicately on the strength of CP–CP attraction relative to CP–RNA attraction. If the attractions are too weak, the capsid cannot form; if they are too strong, the assembly suffers from kinetic traps. Separating the process into two steps—by first turning on CP–RNA attraction and then turning on CP–CP attraction—allows for the assembly of well-formed VLPs under a wide range of attraction strengths. These observations establish a protocol for the efficient in vitro assembly of CCMV VLPs and suggest potential strategies that the virus may employ in vivo.  相似文献   

3.
An efficient method for Pichia cell disruption that employs an aminopropyl magnesium phyllosilicate (AMP) clay-assisted glass beads mill is presented. AMP clay is functionalized nanocomposite resembling the talc parent structure Si8Mg6O20(OH)4 that has been proven to permeate the bacterial membrane and cause cell lysis. The recombinant capsid protein of cowpea chlorotic mottle virus (CCMV) expressed in Pichia pastoris GS115 was used as demonstration system for their ability of self-assembly into icosahedral virus-like particles (VLPs). The total protein concentration reached 4.24 mg/ml after 4 min treatment by glass beads mill combined with 0.2 % AMP clay, which was 11.2 % higher compared to glass beads mill only and the time was half shortened. The stability of purified CCMV VLPs illustrated AMP clay had no influence on virus assembly process. Considering the tiny amount added and simple approach of AMP clay, it could be a reliable method for yeast cell disruption.  相似文献   

4.
Cowpea chlorotic mottle virus (CCMV) capsids were used to encapsulate Prussian blue (PB) particles based on electrostatic interaction. A negatively-charged metal complex, hexacyanoferrate (III), was entrapped inside the capsids through the disassembly/reassembly process under a pH change from 7.5 to 5.2. The loaded capsids reacted with a second Fe(II) to fabricate PB particles. The synthesis of PB in CCMV capsids was confirmed by a unique colour transition at 710 nm and by size-exclusion FPLC. Transmission electron microscopy images of PB-CCMV biohybrids presented discrete spherical particles with a relatively homogeneous size. Dynamic light scattering of PB-CCMV showed two peaks of 29.2 ± 1.7 nm corresponding to triangulation number T = 3 particles, and 17.5 ± 1.2 nm of pseudo T = 2 particles. The encapsulation and crystallization of PB in CCMV provided an efficient method for the self-organization of bimetallic nanoparticles.  相似文献   

5.
L J White  M E Hardy    M K Estes 《Journal of virology》1997,71(10):8066-8072
The expression of the single capsid protein of Norwalk virus (NV) in Spodoptera frugiperda (Sf9) insect cells infected with recombinant baculovirus results in the assembly of virus-like particles (VLPs) of two sizes, the predominant 38-nm, or virion-size VLPs, and smaller, 23-nm VLPs. Here we describe the purification and biochemical characterization of the 23-nm VLPs. The 23-nm VLPs were purified to 95% homogeneity from the medium of Sf9 cultures by isopycnic CsCl gradient centrifugation followed by rate-zonal centrifugation in sucrose gradients. The compositions of the purified 23- and 38-nm VLPs were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and protein immunoblots. VLPs of both sizes showed a doublet at 58 kDa, the size of the full-length capsid protein. Upon alkaline treatment, the 23-nm VLPs underwent dissociation into soluble intermediates that were able to reassemble into 23- and 38-nm VLPs upon dialysis, suggesting that the assembly of both types of structures has a common pathway. Antigenic and biochemical properties of the 38- and 23-nm VLPs were examined and found to be conserved. Immunoprecipitation assays using polyclonal and monoclonal antibodies indicated that immunodominant epitopes on the capsid protein as well as conformational epitopes are conserved in the two types of particles. The trypsin cleavage site at residue 227 was protected in the assembled particles of both sizes but exposed after alkaline dissociation. These results, and the conservation of the binding activity of both forms of recombinant NV VLPs to cultured cells (L. J. White, J. M. Ball, M. E. Hardy, T. N. Tanaka, N. Kitamoto, and M. K. Estes, J. Virol. 70:6589-6597, 1996), suggest that the tertiary folding of the capsid protein responsible for these properties is conserved in the two structures. We hypothesize that the 23-nm VLPs are formed when 60 units of the NV capsid protein assembles into a structure with T=1 symmetry.  相似文献   

6.
目的:构建呈现人白细胞介素-13(interleukin-13,IL-13)抗原肽的Qβ噬菌体病毒样颗粒(virus-like particles,VLPs)疫苗。方法:将人IL-13抗原肽经基因重组插入Qβ噬菌体衣壳蛋白(CP)的C端。在BL21细菌中,经IPTG诱导CP及C端接有IL-13抗原肽的CP(CP/IL-13)同时表达。以硫酸铵沉淀及蔗糖密度梯度离心进行VLPs纯化及分析嵌合VLPs的存在,以HPLC分析VLPs纯度,以电镜观察颗粒形态。小鼠经皮下免疫VLPs后采集血清,以ELISA检测人IL-13特异性Ig G抗体水平。结果:重组蛋白CP与CP/IL-13获得成功表达,两者在密度梯度离心中有一致的、与QβVLPs相同的沉降行为,而CP/IL-13单独无Qβ颗粒行为。经纯化获得了高纯度颗粒,嵌合颗粒与Qβ颗粒形态相似。此外,该VLPs疫苗诱导小鼠产生了IL-13特异的抗体应答。结论:利用共表达策略可成功构建呈现人IL-13抗原表位的嵌合VLPs,为以主动免疫方式调控IL-13在疾病中的病理作用,提供了具有临床应用潜能的疫苗形式。  相似文献   

7.
The capsid of infectious bursal disease virus (IBDV), with a size of 60-65 nm, is formed by an initial processing of polyprotein (pVP2-VP4-VP3) by VP4, subsequent assemblage of pVP2 and VP3, and the maturation of VP2. In Sf9 cells, the processing of polyprotein expressed was restrained in the stage of VP2 maturation, leading to a limited production of capsid, i.e., IBDV-like particles (VLPs). In the present study, another insect cell line, High-Five (Hi-5) cells, was demonstrated to efficiently produce VLPs. Meanwhile, in this system, polyprotein was processed to pVP2 and VP3 protein and pVP2 was further processed to the matured form of VP2. Consequently, Hi-5 cells are better in terms of polyprotein processing and formation of VLPs than Sf9. In addition to the processing of pVP2, VP3 was also degraded. With insufficient intact VP3 protein present for the formation of VLPs, the excessive VP2 form subviral particles (SVPs) with a size of about 25 nm. The ratio of VLPs to SVPs is dependent on the multiplicity of infections (MOIs) used, and an optimal MOI is found for the production of both particles. VLPs were separated from SVPs with a combination of ultracentrifugation and gel-filtration chromatography, and a large number of purified particles of both were obtained. In conclusion, the insect cell lines and MOIs were optimized for the production of VLPs, and pure VLPs with morphology similar to that of the wild-type viruses can be effectively prepared. The efficient production and purification of VLPs benefits not only the development of an antiviral vaccine against IBDV but also the understanding of the structure of this avian virus that is economically important.  相似文献   

8.
Rotavirus virus-like particles (VLPs) and MS2 bacteriophages were bioaccumulated in bivalve mollusks to evaluate viral persistence in shellfish during depuration and relaying under natural conditions. Using this nonpathogenic surrogate virus, we were able to demonstrate that about 1 log10 of VLPs was depurated after 1 week in warm seawater (22 degrees C). Phage MS2 was depurated more rapidly (about 2 log10 in 1 week) than were VLPs, as determined using a single-compartment model and linear regression analysis. After being relayed in the estuary under the influence of the tides, VLPs were detected in oysters for up to 82 days following seeding with high levels of VLPs (concentration range between 10(10) and 10(9) particles per g of pancreatic tissue) and for 37 days for lower contamination levels (10(5) particles per g of pancreatic tissue). These data suggest that viral particles may persist in shellfish tissues for several weeks.  相似文献   

9.
Structural transitions in viral capsids play a critical role in the virus life cycle, including assembly, disassembly, and release of the packaged nucleic acid. Cowpea chlorotic mottle virus (CCMV) undergoes a well-studied reversible structural expansion in vitro in which the capsid expands by 10%. The swollen form of the particle can be completely disassembled by increasing the salt concentration to 1 M. Remarkably, a single-residue mutant of the CCMV N-terminal arm, K42R, is not susceptible to dissociation in high salt (salt-stable CCMV [SS-CCMV]) and retains 70% of wild-type infectivity. We present the combined structural and biophysical basis for the chemical stability and viability of the SS-CCMV particles. A 2.7-A resolution crystal structure of the SS-CCMV capsid shows an addition of 660 new intersubunit interactions per particle at the center of the 20 hexameric capsomeres, which are a direct result of the K42R mutation. Protease-based mapping experiments of intact particles demonstrate that both the swollen and closed forms of the wild-type and SS-CCMV particles have highly dynamic N-terminal regions, yet the SS-CCMV particles are more resistant to degradation. Thus, the increase in SS-CCMV particle stability is a result of concentrated tethering of subunits at a local symmetry interface (i.e., quasi-sixfold axes) that does not interfere with the function of other key symmetry interfaces (i.e., fivefold, twofold, quasi-threefold axes). The result is a particle that is still dynamic but insensitive to high salt due to a new series of bonds that are resistant to high ionic strength and preserve the overall particle structure.  相似文献   

10.
Viral particles and virus-like particles (VLPs) or capsids are becoming important vehicles and templates in bio-imaging, drug delivery and materials sciences. Viral particles are prepared by infecting the host organism but VLPs are obtained from cells that express a capsid protein. Some VLPs are disassembled and then re-assembled to incorporate a material of interest. Cell-free systems, which are amenable to manipulating the viral assembly process, are also available for producing viral particles. Regardless of the production system employed, the particles are functionalized by genetic and/or chemical engineering. Here, we review various methods for producing and functionalizing viral particles and VLPs, and we discuss the merits of each system.  相似文献   

11.
Rotaviruses are triple-layered particles that contain four major capsid proteins, VP2, VP4, VP6, and VP7, and two minor proteins, VP1 and VP3. We have cloned each of the rotavirus genes coding for a major capsid protein into the baculovirus expression system and expressed each protein in insect cells. Coexpression of different combinations of the rotavirus major structural proteins resulted in the formation of stable virus-like particles (VLPs). The coexpression of VP2 and VP6 alone or with VP4 resulted in the production of VP2/6 or VP2/4/6 VLPs, which were similar to double-layered rotavirus particles. Coexpression of VP2, VP6, and VP7, with or without VP4, produced triple-layered VP2/6/7 or VP2/4/6/7 VLPs, which were similar to native infectious rotavirus particles. The VLPs maintained the structural and functional characteristics of native particles, as determined by electron microscopic examination of the particles, the presence of nonneutralizing and neutralizing epitopes on VP4 and VP7, and hemagglutination activity of the VP2/4/6/7 VLPs. The production of VP2/4/6 particles indicated that VP4 interacts with VP6. Cell binding assays performed with each of the VLPs indicated that VP4 is the viral attachment protein. Chimeric particles containing VP7 from two different G serotypes also were obtained. The ability to express individual proteins or to coexpress different subsets of proteins provides a system with which to examine the interactions of the rotavirus structural proteins, the role of individual proteins in virus morphogenesis, and the feasibility of a subunit vaccine.  相似文献   

12.
Electrostatic properties of cowpea chlorotic mottle virus (CCMV) and cucumber mosaic virus (CMV) were investigated using numerical solutions to the Poisson-Boltzmann equation. Experimentally, it has been shown that CCMV particles swell in the absence of divalent cations when the pH is raised from 5 to 7. CMV, although structurally homologous, does not undergo this transition. An analysis of the calculated electrostatic potential confirms that a strong electrostatic repulsion at the calcium-binding sites in the CCMV capsid is most likely the driving force for the capsid swelling process during the release of calcium. The binding interaction between the encapsulated genome material (RNA) inside of the capsid and the inner capsid shell is weakened during the swelling transition. This probably aids in the RNA release process, but it is unlikely that the RNA is released through capsid openings due to unfavorable electrostatic interaction between the RNA and capsid inner shell residues at these openings. Calculations of the calcium binding energies show that Ca(2+) can bind both to the native and swollen forms of the CCMV virion. Favorable binding to the swollen form suggests that Ca(2+) ions can induce the capsid contraction and stabilize the native form.  相似文献   

13.
Simian virus 40 (SV40) virus-like particles (VLPs) are efficient nanocarriers for gene delivery. VLPs conjugated to human epidermal growth factor (hEGF) were prepared and the cell selectivity of the VLP was examined using human epithelial carcinoma A431 cells, which overexpress the EGF receptor. The endocytic efficiency was determined by the level of Gaussia luciferase activity from the encapsulated protein in hEGF-conjugated VLPs. EGF receptor-mediated endocytosis of hEGF-conjugated VLPs was significantly increased and was confirmed by fluorescence imaging using mCherry encapsulated in hEGF-conjugated VLPs. These results suggest that VLPs of SV40 conjugated to a specific ligand could be used for cell selective gene delivery.  相似文献   

14.
A procedure has been developed for the purification of virus-like particles (VLPs) from Schneider line 2 Drosophila cells. The VLPs were precipitated with polyethylene glycol from the cytoplasmic fraction of lysed cells and further purified by equilibrium centrifugation in CsCl density gradients, in which they band at a density of 1.366 g/ml. Electron micrographs of these preparations revealed polyhedral particles with a diameter of 310–330 Å. We have also found particles of this size in thin sections of the intact cells. Sedimentation of the VLPs through 10–70% sucrose gradients yields a sedimentation coefficient of 235 S. Preliminary studies show that the VLPs contain double-stranded RNA species of 10 S, 14.5 S, 16 S, and 18 S.  相似文献   

15.
Mortola E  Roy P 《FEBS letters》2004,576(1-2):174-178
Virus-like particles (VLPs) produced by recombinant expression of the major viral structural proteins could be an attractive method for severe acute respiratory syndrome (SARS) control. In this study, using the baculovirus system, we generated recombinant viruses that expressed S, E, M and N structural proteins of SARS-CoV either individually or simultaneously. The expression level, size and authenticity of each recombinant SARS-CoV protein were determined. In addition, immunofluorescence and FACS analysis confirmed the cell surface expression of the S protein. Co-infections of insect cells with two recombinant viruses demonstrated that M and E could assemble readily to form smooth surfaced VLPs. On the other hand, simultaneous high level expression of S, E and M by a single recombinant virus allowed the very efficient assembly and release of VLPs. These data demonstrate that the VLPs are morphological mimics of virion particles. The high level expression of VLPs with correct S protein conformation by a single recombinant baculovirus offers a potential candidate vaccine for SARS.  相似文献   

16.
The matrix (M) protein of Nipah virus (NiV) is a peripheral protein that plays a vital role in the envelopment of nucleocapsid protein and acts as a bridge between the viral surface and the nucleocapsid proteins. The M protein is also proven to play an important role in production of virus‐like particles (VLPs) and is essential for assembly and budding of NiV particles. The recombinant M protein produced in Escherichia coli assembled into VLPs in the absence of the viral surface proteins. However, the E. coli produced VLPs are smaller than the native virus particles. Therefore, the aims of this study were to produce NiV M protein in Pichia pastoris, to examine the structure of the VLPs formed, and to assess the potential of the VLPs as a diagnostic reagent. The M protein was successfully expressed in P. pastoris and was detected with anti‐myc antibody using Western blotting. The VLPs formed by the recombinant M protein were purified with sucrose density gradient ultracentrifugation, high‐performance liquid chromatography (HPLC), and Immobilized Metal Affinity Chromatography (IMAC). Immunogold staining and transmission electron microscopy confirmed that the M protein assembled into VLPs as large as 200 nm. ELISA revealed that the NiV M protein produced in P. pastoris reacted strongly with positive NiV sera demonstrating its potential as a diagnostic reagent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1038–1045, 2016  相似文献   

17.
Killer strains of Saccharomyces cerevisiae bear at least two different double-stranded RNAs (dsRNAs) encapsidated in 39-nm viruslike particles (VLPs) of which the major coat protein is coded by the larger RNA (L-A dsRNA). The smaller dsRNA (M1 or M2) encodes an extracellular protein toxin (K1 or K2 toxin). Based on their densities on CsCl gradients, L-A- and M1-containing particles can be separated. Using this method, we detected a new type of M1 dsRNA-containing VLP (M1-H VLP, for heavy) that has a higher density than those previously reported (M1-L VLP, for light). M1-H and M1-L VLPs are present together in the same strains and in all those we tested. M1-H, M1-L, and L-A VLPs all have the same types of proteins in the same approximate proportions, but whereas L-A VLPs and M1-L VLPs have one dsRNA molecule per particle, M1-H VLPs contain two M1 dsRNA molecules per particle. Their RNA polymerase produces mainly plus single strands that are all extruded in the case of M1-H particles but are partially retained inside the M1-L particles to be used later for dsRNA synthesis. We show that M1-H VLPs are formed in vitro from the M1-L VLPs. We also show that the peak of M1 dsRNA synthesis is in fractions lighter than M1-L VLPs, presumably those carrying only a single plus M1 strand. We suggest that VLPs carrying two M1 dsRNAs (each 1.8 kilobases) can exist because the particle is designed to carry one L-A dsRNA (4.5 kilobases).  相似文献   

18.
Transmission electron microscopy (TEM) was used to determine whether Acropora muricata coral colonies from the Great Barrier Reef (GBR), Australia, harboured virus-like particles (VLPs). VLPs were present in all coral colonies sampled at Heron Island (southern GBR) and in tagged coral colonies sampled in at least two of the three sampling periods at Lizard Island (northern GBR). VLPs were observed within gastrodermal and epidermal tissues, and on rarer occasions, within the mesoglea. These VLPs had similar morphologies to known prokaryotic and eukaryotic viruses in other systems. Icosahedral VLPs were observed most frequently, however, filamentous VLPs (FVLPs) and phage were also noted. There were no clear differences in VLP size, morphology or location within the tissues with respect to sample date, coral health status or site. The most common VLP morphotype exhibited icosahedral symmetry, 120–150 nm in diameter, with an electron-dense core and an electronlucent membrane. Larger VLPs of similar morphology were also common. VLPs occurred as single entities, in groups, or in dense clusters, either as free particles within coral tissues, or within membrane-bound vacuoles. VLPs were commonly observed within the perinuclear region, with mitochondria, golgi apparatus and crescent-shaped particles frequently observed within close proximity. The host(s) of these observed VLPs was not clear; however, the different sizes and morphologies of VLPs observed within A. muricata tissues suggest that viruses are infecting either the coral animal, zooxanthellae, intracellular bacteria and/or other coral-associated microbiota, or that the one host is susceptible to infection from more than one type of virus. These results add to the limited but emerging body of evidence that viruses represent another potentially important component of the coral holobiont.  相似文献   

19.
In the present work, we demonstrate virus-like particles (VLPs) with various morphological variations in Trichomonas vaginalis. The VLPs were distinct based on size, shape and electron density, with VLPs being either electron-dense or electron-lucent. We used electron microscopy thin sections of several T. vaginalis strains virus-infected, and also negative staining of fractions obtained after purification by CsCl buoyant density gradient centrifugation. The particles observed in fractions are identical to those previously described, but by thin sections, we found new forms. The shapes found were icosahedral, spherical and oblong, and the sizes varied from 33 to 120nm in diameter with the most common VLP being spherical and having a size range from 83 to 104nm. The VLPs were found in the cytoplasm closely associated with the Golgi complex, with some VLPs budding from the Golgi, and other VLPs were detected adjacent to the plasma membrane. Unidentified cytoplasmic inclusions were observed in the region close to the VLPs and Golgi. Clusters of the already described icosahedral virus were also observed in the cytoplasm, although less frequently. These results indicate that T. vaginalis organisms may be infected with different dsRNA viruses simultaneously.  相似文献   

20.
为了研制戊型肝炎新型基因工程疫苗,利用汉逊酵母表达系统表达重组戊型肝炎病毒样颗粒,成功构建了重组戊型肝炎疫苗工程菌株HP/HEV2.3,对该菌株的发酵条件和纯化工艺进行了研究。先将工作种子批进行发酵培养,收集发酵后的细胞培养物;对其先后进行细胞破碎、澄清和超滤、硅胶吸附和解吸附、超滤浓缩换液、色谱纯化及除菌过滤,制得重组汉逊酵母戊型肝炎病毒样颗粒,纯化收率为33%,纯度达99%;电镜观察显示该重组汉逊酵母戊型肝炎病毒样颗粒与天然戊型肝炎病毒颗粒理论大小一致,为32 nm;基因序列与理论一致;SDS-PAGE分析结果表明其表达的外源蛋白质分子量与预期的目的蛋白质分子量大小一致,均为56 k Da,表达量占细胞总蛋白的26%,表达水平为1.0 g/L发酵液;Western blotting、ELISA活性检测及小鼠免疫接种效力试验ED_(50)结果表明,此重组汉逊酵母戊型肝炎病毒样颗粒具有良好的抗原性和免疫原性,可用于制造戊型肝炎新型基因工程疫苗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号