首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leptin-deficient obese mice (ob/ob) have decreased circulating growth hormone (GH) and pituitary GH and ghrelin receptor (GHS-R) mRNA levels, whereas hypothalamic GH-releasing hormone (GHRH) and somatostatin (SST) expression do not differ from lean controls. Given the fact that GH is suppressed in diet-induced obesity (a state of hyperleptinemia), it remains to be determined whether the absence of leptin contributes to changes in the GH axis of ob/ob mice. Therefore, to study the impact of leptin replacement on the hypothalamic-pituitary GH axis of ob/ob mice, leptin was infused for 7 days (sc), resulting in circulating leptin levels that were similar to wild-type controls (approximately 1 ng/ml). Leptin treatment reduced food intake, body weight, and circulating insulin while elevating circulating n-octanoyl ghrelin concentrations. Leptin treatment did not alter hypothalamic GHRH, SST, or GHS-R mRNA levels compared with vehicle-treated controls. However, leptin significantly increased pituitary GH and GHRH-R expression and tended to enhance circulating GH levels, but this latter effect did not reach statistical significance. In vitro, leptin (1 ng/ml, 24 h) did not affect pituitary GH, GHRH-R, or GHS-R mRNA but did enhance GH release. The in vivo effects of leptin on circulating hormone and pituitary mRNA levels were not replicated by pair feeding ob/ob mice to match the food intake of leptin-treated mice. However, leptin did prevent the fall in hypothalamic GHRH mRNA and circulating IGF-I levels observed in pair-fed mice. These results demonstrate that leptin replacement has positive effects on multiple levels of GH axis function in ob/ob mice.  相似文献   

2.
To assess the dominance between hypoinsulinemia and hypoleptinemia as factors in the development of hyperphagia in streptozotocin (STZ)-induced diabetes mellitus (STZ-DM) rodents with respect to hormone-neuropeptide interactions, changes in gene expression of agouti gene-related protein (AGRP) in the arcuate nucleus of the hypothalamus were investigated using STZ-DM rats, fasting Zucker fa/fa rats and STZ-DM agouti (STZ-DM A(y)/a) mice. AGRP mRNA and neuropeptide Y mRNA were both significantly up-regulated in STZ-DM rats, which are associated with body weight loss, hyperglycemia, hypoinsulinemia and hypoleptinemia. We proceeded to analyze whether insulin or leptin played the greater role in the regulation of AGRP using Zucker fa/fa rats. The AGRP mRNA did not differ significantly between fasted fa/fa rats, which have both leptin-insensitivity and hypoinsulinemia, and fed Zuckers, which have leptin-insensitivity and hyperinsulinemia. We further found that up-regulation of AGRP expression was normalized by infusion of leptin into the third cerebroventricle (i3vt), but not by i3vt infusion of insulin, although up-regulation of AGRP was partially corrected by systemic insulin infusion. The latter finding supports hypoleptinemia as a key-modulator of STZ-DM-induced hyperphagia because systemic insulin infusion, at least partially, restored hypoleptinemia through its acceleration of fat deposition, as demonstrated by the partial recovery of lost body weight. After STZ-DM induction, A(y)/a mice whose melanocortin-4 receptor (MC4-R) was blocked by ectopic expression of agouti protein additionally accelerated hyperphagia and up-regulated AGRP mRNA, implying that the mechanism is triggered by a leptin deficit rather than by the main action of the message through MC4-R. Hypoleptinemia, but not hypoinsulinemia per se, thus develops hyperphagia in STZ-DM rodents. These results are very much in line with evidence that hypothalamic neuropeptides are potently regulated by leptin as downstream targets of its actions.  相似文献   

3.
Corticotropin-releasing factor overexpressing (CRF-OE) male mice showed an inhibited feeding response to a fast, and lower plasma acyl ghrelin and Fos expression in the arcuate nucleus compared to wild-type (WT) mice. We investigated whether hormones and hypothalamic feeding signals are impaired in CRF-OE mice and the influence of sex. Male and female CRF-OE mice and WT littermates (4–6 months old) fed ad libitum or overnight fasted were assessed for body, adrenal glands and perigonadal fat weights, food intake, plasma hormones, blood glucose, and mRNA hypothalamic signals. Under fed conditions, compared to WT, CRF-OE mice have increased adrenal glands and perigonadal fat weight, plasma corticosterone, leptin and insulin, and hypothalamic leptin receptor and decreased plasma acyl ghrelin. Compared to male, female WT mice have lower body and perigonadal fat and plasma leptin but higher adrenal glands weights. CRF-OE mice lost these sex differences except for the adrenals. Male CRF-OE and WT mice did not differ in hypothalamic expression of neuropeptide Y (NPY) and proopiomelanocortin (POMC), while female CRF-OE compared to female WT and male CRF-OE had higher NPY mRNA levels. After fasting, female WT mice lost more body weight and ate more food than male WT, while CRF-OE mice had reduced body weight loss and inhibited food intake without sex difference. In male WT mice, fasting reduced plasma insulin and leptin and increased acyl ghrelin and corticosterone while female WT showed only a rise in corticosterone. In CRF-OE mice, fasting reduced insulin while leptin, acyl ghrelin and corticosterone were unchanged with no sex difference. Fasting blood glucose was higher in CRF-OE with female > male. In WT mice, fasting increased hypothalamic NPY expression in both sexes and decreased POMC only in males, while in CRF-OE mice, NPY did not change, and POMC decreased in males and increased in females. These data indicate that CRF-OE mice have abnormal basal and fasting circulating hormones and hypothalamic feeding-related signals. CRF-OE also abolishes the sex difference in body weight, abdominal fat, and fasting-induced feeding and changes in plasma levels of leptin and acyl ghrelin.  相似文献   

4.
Ghrelin is a novel gut-brain peptide that binds to the growth hormone secretagogue receptor (GHS-R), thereby functioning in the regulation of growth hormone (GH) release and food intake. Ghrelin-producing cells are most abundant in the oxyntic glands of the stomach. The regulatory mechanism that governs the biosynthesis and secretion of ghrelin has not been clarified. We report that ghrelin mRNA expression in the gastric fundus was increased, but that ghrelin peptide content decreased after a 48-h fast. Both values returned to control levels after refeeding. The ghrelin plasma concentration in the gastric vein and systemic venous blood increased after 24- and 48-h fasts. Furthermore, des-octanoylated ghrelin and n-octanoylated ghrelin were found in rat stomach, with the ratio of des-octanoylated ghrelin to n-octanoylated ghrelin markedly increased after fasting. The ghrelin mRNA level in the stomach also increased after administration of insulin and leptin. Conversely, db/db mice, which are deficient in the leptin receptor, had lower ghrelin mRNA levels than control mice. These findings suggest that this novel gastrointestinal hormone plays a role in the regulation of energy balance.  相似文献   

5.
Leptin, ghrelin and neuropeptide W (NPW) modulate vagal afferent activity, which may underlie their appetite regulatory actions. High fat diet (HFD)-induced obesity induces changes in the plasma levels of these peptides and alters the expression of receptors on vagal afferents. We investigated homologous and heterologous receptor regulation by leptin, ghrelin and NPW. Mice were fed (12 weeks) a standard laboratory diet (SLD) or HFD. Nodose ganglia were cultured overnight in the presence or absence of each peptide. Leptin (LepR), ghrelin (GHS-R), NPW (GPR7) and cholecystokinin type-1 (CCK1R) receptor mRNA, and the plasma leptin, ghrelin and NPW levels were measured. SLD: leptin reduced LepR, GPR7, increased GHS-R and CCK1R mRNA; ghrelin increased LepR, GPR7, CCK1R, and decreased GHS-R. HFD: leptin decreased GHS-R and GPR7, ghrelin increased GHS-R and GPR7. NPW decreased all receptors except GPR7 which increased with HFD. Plasma leptin was higher and NPW lower in HFD. Thus, HFD-induced obesity disrupts inter-regulation of appetite regulatory receptors in vagal afferents.  相似文献   

6.
We have previously shown that growth hormone (GH) overexpression in the brain increased food intake, accompanied with increased hypothalamic agouti-related protein (AgRP) expression. Ghrelin, which stimulates both appetite and GH secretion, was injected intracerebroventricularly to GHR-/- and littermate control (+/+) mice to determine whether ghrelin's acute effects on appetite are dependent on GHR signaling. GHR-/- mice were also analyzed with respect to serum levels of lipoproteins, apolipoprotein (apo)B, leptin, glucose, and insulin as well as body composition. Central injection of ghrelin into the third dorsal ventricle increased food consumption in +/+ mice, whereas no change was observed in GHR-/- mice. After ghrelin injection, AgRP mRNA expression in the hypothalamus was higher in +/+ littermates than in GHR-/- mice, indicating a possible importance of AgRP in the GHR-mediated effect of ghrelin. Compared with controls, GHR-/- mice had increased food intake, leptin levels, and total and intra-abdominal fat mass per body weight and deceased lean mass. Moreover, serum levels of triglycerides, LDL and HDL cholesterol, and apoB, as well as glucose and insulin levels were lower in the GHR-/- mice. In summary, ghrelin's acute central action to increase food intake requires functionally intact GHR signaling. Long-term GHR deficiency in mice is associated with high plasma leptin levels, obesity, and increased food intake but a marked decrease in all lipoprotein fractions.  相似文献   

7.
In the last 10 years, saliva has been increasingly used as a diagnostic fluid and in predictions of disease progression. Leptin and ghrelin are synthesized in several tissues including the salivary glands. The action of ghrelin is antagonistic to that of leptin. This study was undertaken to measure and compare the saliva ghrelin-leptin and plasma ghrelin-leptin levels in healthy young subjects. In 30 healthy subjects, after an overnight fast, saliva and plasma leptin levels were measured using the ELISA method while saliva and plasma immunoreactive ghrelin levels were measured using a commercial radioimmunoassay (RIA). The latter uses 125I-labeled bioactive ghrelin as a tracer and a rabbit polyclonal antibody raised against full-length octanoylated human ghrelin (Phoenix, Europe, Karlsruhe, Germany). The results of this investigation revealed that saliva leptin levels (6.19+/-2.10 microg/l) were lower than plasma levels (7.39+/-3.23 microg/l) while saliva ghrelin levels (188.5+/-84.7 pg/ml) were higher than plasma levels (126.4+/-38.5 pg/ml), when male and female subjects were considered together. Saliva leptin levels (5.93+/-1.94 microg/l) were lower than plasma levels (6.22+/-2.92 pg/ml) while saliva ghrelin levels (190.3+/-80.2 pg/ml) were higher than plasma levels (120.4+/-35.7 pg/ml) in young males. Saliva leptin levels (6.47+/-2.29 microg/l) were lower than plasma levels (8.73+/-3.14 microg/l) while saliva ghrelin levels (183.2+/-90.2 pg/ml) were higher than plasma levels (129.3+/-42.8 pg/ml) in young females, and both saliva and plasma leptin levels were slightly lower in male subjects in comparison with female subjects. Also, Immunohistochemistry study indicated that ghrelin positivity was found in ductus epithelium of salivary gland. We have demonstrated for the first time that saliva ghrelin levels were higher than in plasma while saliva leptin levels were almost the same as in plasma. Measurements of ghrelin and leptin in saliva is non-invasive, simple, and generally much preferred by patients and thus may be an acceptable alternative to plasma sampling.  相似文献   

8.
We attempted to clarify whether leptin and uncoupling protein 1 (UCP1) are involved in the action of nicotine on the energy balance. Male Wistar rats were infused subcutaneously with nicotine (12 mg x kg(-1) x day(-1)) for 4 or 14 days. At the end of the 4-day period, the plasma concentrations of leptin of the nicotine-treated and pair-fed rats were lower than those of the freely fed rats, although the levels of leptin mRNA expression in various white adipose tissues did not differ among the three groups. At the end of the 14-day nicotine infusion period, plasma concentrations of leptin were higher, and leptin mRNA expression in the omentum and epididymal and retroperitoneal adipose tissues was stronger in the nicotine-treated rats than in the pair-fed and freely fed rats. UCP1 mRNA expression in the brown adipose tissue of nicotine-treated was stronger than that of the pair-fed rats. These results suggest that continuous nicotine infusion differentially affects the synthesis and secretion of leptin according to the duration of infusion and stimulates UCP1 mRNA expression, probably in a manner independent of leptin.  相似文献   

9.
We have investigated the effects of maternal undernutrition during late gestation on maternal and fetal plasma concentrations of leptin and on leptin gene expression in fetal perirenal adipose tissue. Pregnant ewes were randomly assigned at 115 days of gestation (term = 147 +/- 3 days [mean +/- SEM]) to either a control group (n = 13) or an undernourished group (n = 16) that received approximately 50% of the control diet until 144-147 days of gestation. Maternal plasma glucose, but not leptin, concentrations were lower in the undernourished ewes. A significant correlation was found, however, between mean maternal plasma leptin (y) and glucose (x) concentrations (y = 2.9x - 2.4; r = 0.51, P < 0.02) when the control and undernourished groups were combined. Fetal plasma glucose and insulin, but not fetal leptin, concentrations were lower in the undernourished ewes, and no correlation was found between mean fetal leptin concentrations and either mean fetal glucose or insulin concentrations. A positive relationship, however, was found between mean fetal (y) and maternal (x) plasma leptin concentrations (y = 0.18x + 0.45; r = 0.66, P < 0.003). No significant difference was found in the relative abundance of leptin mRNA in fetal perirenal fat between the undernourished (0.60 +/- 0.09, n = 10) and control (0.70 +/- 0.08, n = 10) groups. Fetal plasma concentrations of leptin (y) and leptin mRNA levels (x) in perirenal adipose tissue were significantly correlated (y = 1.5x +/- 0.3; r = 0.69, P < 0.05). In summary, the capacity of leptin to act as a signal of moderate maternal undernutrition may be limited before birth in the sheep.  相似文献   

10.
Ghrelin is an acylated peptide stimulating secretion of the growth hormone (GH). It was originally isolated from the rat stomach as an endogenous ligand for the growth hormone secretagogue receptor. Although being predominantly produced by endocrine cells of the gastric fundus, its secretion has been found in various tissues including the kidney. To study the influence of renal failure on plasma ghrelin levels we examined 16 patients with end-stage renal disease (ESRD) receiving hemodialysis (8 men and 8 women) and 19 controls (10 men and 9 women). Both groups were comparable in age and BMI. In all subjects we assessed plasma levels of ghrelin, leptin, soluble leptin receptor, insulin, IGF-I, IGFBP-1, IGFBP-3 and IGFBP-6. Ghrelin levels were significantly higher in the group of dialyzed patients (4.49+/-0.74 vs. 1.79+/-0.15 ng/ml; p<0.001). These patients had significantly higher levels of GH, IGFBP-1, IGFBP-6, leptin and percentage of body fat (p<0.05). In the group of patients with ESRD plasma ghrelin levels positively correlated with IGFBP-1 (p<0.01). In the control group, ghrelin positively correlated with GH concentrations (p<0.01) and negatively correlated with the levels of insulin and creatinine (p<0.05). In conclusion, patients with ESRD have higher ghrelin concentrations, which might be caused by a decreased excretion/metabolism of ghrelin in the kidney during renal failure.  相似文献   

11.
BACKGROUND: Although hormonal responses to exercise performed in fed state are well documented, far less in known about the effect of a single exercise bout, performed after overnight fasting, on cardio-respiratory responses and hormones secretion. It has been reported that recently discovered hormones as leptin and ghrelin may affect cardiovascular responses at rest. However, their effect on the cardiovascular responses to exercise is unknown. AIMS: This study was designed to determine the effect of overnight fasting on cardio- respiratory responses during moderate incremental exercise. We have hypothesised that fasting / exercise induced changes in plasma leptin / ghrelin concentrations may influence cardiovascular response. MATERIAL AND METHODS: Eight healthy non-smoking men (means +/- SE.: age 23.0 +/- 0.5 years; body mass 71.9 +/- 1.5 kg; height 179.1 +/- 0.8 cm; BMI 22.42 +/- 0.49 kg x m(-2) with VO2max of 3.71 +/- 0.10 l x min(-1)) volunteered for this study. The subjects performed twice an incremental exercise test, with the increase of power output by 30 W every 3 minutes. Tests were performed in a random order: once in the feed state--cycling until exhaustion and second, about one week later, after overnight fasting--cycling until reaching 150 W. RESULTS: In the present study we have compared the results obtained during incremental exercise performed only up to 150 W (59 +/- 2 % of VO2max) both in fed and fasted state. Heart rate measured during exercise at each power output, performed in fasted state was by about 10 bt x min(-1) (p = 0.02) lower then in fed subjects. Respiratory quotient and plasma lactate concentration in fasted state were also significantly (p<0.001) lower than in the fed state. Pre-exercise plasma leptin and ghrelin concentrations were not significantly different in fed and fasted state. Exercise induced increase in hGH was not accompanied by a significant changes in the studied gut hormones such as ghrelin, leptin, and insulin, except for plasma gastrin concentration, which was significantly (p = 0.008) lower in fasting subjects at the power output of 150 W. Plasma [IL-6] at rest before exercise performed in fasted state was significantly (p = 0.03) elevated in relation to the fed state. This was accompanied by significantly higher (p = 0.047) plasma noradrenaline concentration. Plasma IL-6 concentration at rest in fed subjects was negatively correlated with plasma ghrelin concentration (r = -0.73, p < 0.05) and positively correlated with plasma insulin concentration (r = 0.78, p < 0.05). Significant negative correlation (r = -0.90; p < 0.05) was found between plasma insulin and ghrelin concentration at rest in fed subjects. CONCLUSIONS: We have concluded that plasma leptin and ghrelin concentrations have no significant effect on the fasting-induced attenuation of heart rate during exercise. We have postulated that this effect is caused by increased plasma norepinephrine concentration, leading to the increase in systemic vascular resistance and baroreceptor mediated vagal stimulation. Moreover we believe, that the fasting-induced significant increase in plasma IL-6 concentration at rest, accompanied by higher plasma norepinephrine concentration and lower RQ, belongs to the physiological responses, maintaining energy homeostasis in the fasting state.  相似文献   

12.
The arctic fox (Alopex lagopus) is a medium-sized predator of the high Arctic experiencing extreme seasonal fluctuations in food availability, photoperiod and temperature. In this study, the plasma leptin, ghrelin and growth hormone (GH) concentrations of male arctic foxes were determined during a food deprivation period of 13 days and the subsequent recovery in November and May. Leptin, ghrelin and GH were present in arctic fox plasma in amounts comparable to other carnivores. The plasma leptin concentrations did not react to food deprivation unlike in humans and rodents. However, the leptin levels increased during re-feeding as an indicator of increasing energy reserves. The relatively high ghrelin–leptin ratio, decrease in the plasma ghrelin concentration, an increase in the circulating GH concentrations and the observed negative correlation between plasma ghrelin and free fatty acid levels during fasting suggest that these hormones take part in the weight-regulation and energy metabolism of this species by increasing fat utilisation during food deprivation. The results strengthen the hypothesis that the actions of these weight-regulatory hormones are species–specific and depend on seasonality and the life history of the animals.Abbreviations FFA free fatty acid - GH growth hormone - RMR resting metabolic rate Communicated by G. Heldmaier  相似文献   

13.
The aim of this study was to obtain basic knowledge of the plasma concentrations and interactions of weight regulatory hormones in juvenile minks (Mustela vison). Ghrelin, leptin, and growth hormone (GH) levels were validated and determined by radioimmunoassay methods from the plasma of 30 female and 30 male minks. The female minks had higher plasma ghrelin and GH levels than the males. The plasma ghrelin concentrations of the females correlated positively with their body masses (BMs). The plasma leptin levels did not differ between sexes, but there was a positive correlation between the plasma leptin concentrations and BMs in the male minks. When the data from the male and female minks were combined, the correlation between the leptin levels and the BMs was still clear, but this was not observed in the females alone. In the male minks, the plasma GH levels correlated positively with the BMs and with the plasma leptin concentrations. However, there was no correlation between the plasma ghrelin and GH or leptin concentrations. The hormone concentrations were quite similar to earlier measurements in other carnivores.  相似文献   

14.
Palatable food is rich in fat and/or sucrose. In this study we examined the long-term effects of such diets on food intake, body weight, adiposity and circulating levels of the satiety peptide leptin and the hunger peptide ghrelin. The experiments involved rats and mice and lasted 5 weeks. In rats, we examined the effect of diets rich in fat and/or sucrose and in mice the effect of a high fat diet with or without sucrose in the drinking water. Animals fed with the palatable diets had a larger intake of calories, gained more weight and became more adipose than animals fed standard rat chow. Fasted animals are known to have low serum leptin and high serum ghrelin and to display elevated serum leptin and lowered serum ghrelin postprandially. With time, a sucrose-rich diet was found to raise the fasting level of leptin and to lower the fasting level of ghrelin in rats. A fat-rich diet suppressed serum ghrelin without affecting serum leptin; high sucrose and high fat in combination greatly reduced serum ghrelin and raised serum leptin in the fasted state. The mRNA expression of leptin in the rat stomach was up-regulated by sucrose-rich (but not by fat-rich) diets, whereas the expression of ghrelin seemed not to be affected by the palatable diets. Mice responded to sucrose in the drinking water with elevated serum leptin (fasted state) and to all palatable diets with low serum ghrelin. The expression of both leptin and ghrelin mRNA in the stomach was suppressed in fasted mice that had received a high fat diet for 5 weeks. We conclude that the expression of leptin mRNA in stomach and the concentration of leptin in serum were elevated in response to sucrose-rich rather than fat-rich diets, linking leptin with sucrose metabolism. In contrast, the expression of ghrelin and the serum ghrelin concentration were suppressed by all palatable diets, sucrose and fat alike. In view of the increased body weight and adiposity neither elevated leptin nor suppressed ghrelin were able to control/restrain the overeating that is associated with palatable diets.  相似文献   

15.
Ghrelin and leptin are suggested to regulate energy homeostasis as mutual antagonists on hypothalamic neurons that regulate feeding behavior. We employed reverse genetics to investigate the interplay between ghrelin and leptin. Leptin-deficient mice (ob/ob) are hyperphagic, obese, and hyperglycemic. Unexpectedly, ablation of ghrelin in ob/ob mice fails to rescue the obese hyperphagic phenotype, indicating that the ob/ob phenotype is not a consequence of ghrelin unopposed by leptin. Remarkably, deletion of ghrelin augments insulin secretion in response to glucose challenge and increases peripheral insulin sensitivity; indeed, the hyperglycemia exhibited by ob/ob mice is markedly reduced when ob/ob mice are bred onto the ghrelin(-/-) background. We further demonstrate that ablation of ghrelin reduces expression of Ucp2 mRNA in the pancreas, which contributes toward enhanced glucose-induced insulin secretion. Hence, chronically, ghrelin controls glucose homeostasis by regulating pancreatic Ucp2 expression and insulin sensitivity.  相似文献   

16.
Li J  Ma W  Wang S 《Regulatory peptides》2011,171(1-3):53-57
Gastrointestinal (GI) motility and gut hormones have been considered to be involved in the development and maintenance of obesity. Our aim was to assess the relationships between gastric emptying (GE), GI transit and gut hormones and leptin concentrations in diet-induced obese rat model. Male 6-week-old Sprague-Dawley rats were fed with a high-fat (HF) diet for 8weeks to generate diet-induced obesity (DIO) and diet resistant (DR) rats. GE, GI transit and plasma ghrelin, cholecystokinin (CCK), PYY and leptin concentrations were determined in DIO, DR and control (CON) rats. The DIO rats had slower GE, higher plasma leptin and CCK concentrations, and lower plasma ghrelin concentration compared with CON and DR rats. GE was correlated with plasma ghrelin (r=0.402, P=0.028), CCK (r=-0.518, P=0.003) and leptin concentration (r=-0.514, P=0.004). The slower GE, which can be considered as an adaptive response aimed at HF diet induced obesity, may be mediated by changes of plasma ghrelin, CCK and leptin concentrations.  相似文献   

17.
The influence of fasting and winter-acclimatization (cold and short-day acclimatization) on mouse plasma leptin, ghrelin, growth hormone (GH) and melatonin concentrations was determined from blood samples taken at mid-day and midnight. A 16-h fast decreased the plasma leptin but almost doubled the plasma ghrelin concentrations which contribute to energy saving, appetite stimulation and, in the case of leptin, to inhibition of reproduction. Winter-acclimatization did not affect plasma ghrelin concentrations, whereas leptin decreased to the same level as in fasting. The low leptin concentrations possibly enable an increased caloric intake for the purpose of thermogenesis. Fasting and winter-acclimatization seemed to abolish the diurnal leptin rhythm, but had no effect on that of ghrelin. Plasma melatonin concentration correlated negatively with ghrelin, suggesting a possible role for melatonin in the regulation of ghrelin concentration. SNS-activity and insulin appear to be the main regulators of leptin plasma concentration in the mouse, rather than melatonin as in some seasonal mammals. Interestingly, endogenous ghrelin did not stimulate GH secretion, which is a well-documented reaction to exogenous ghrelin injections.  相似文献   

18.
Rats selectively bred to develop diet-induced obesity (DIO) spontaneously gain more body weight between 5 and 7 wk of age than do those bred to be diet resistant (DR). Here, chow-fed DIO rats ate 9% more and gained 19% more body weight from 5 to 6 wk of age than did DR rats but had comparable leptin and insulin levels. However, 6-wk-old DIO rats had 29% lower plasma ghrelin levels at dark onset but equivalent levels 6 h later compared with DR rats. When subsequently fed a high-energy (HE; 31% fat) diet for 10 days, DIO rats ate 70% more, gained more body and adipose depot weight, had higher leptin and insulin levels, and had 22% lower feed efficiency than DR rats fed HE diet. In DIO rats on HE diet, leptin levels increased significantly at 3 days followed by increased insulin levels at 7 days. These altered DIO leptin and ghrelin responses were associated with 10% lower leptin receptor mRNA expression in the arcuate (ARC), dorsomedial (DMN), and ventromedial hypothalamic nuclei and 13 and 15% lower ghrelin receptor (GHS-R) mRNA expression in the ARC and DMN than in the DR rats. These data suggest that increased ghrelin signaling is not a proximate cause of DIO, whereas reduced leptin sensitivity might play a causal role.  相似文献   

19.
Anti-cachectic effect of ghrelin in nude mice bearing human melanoma cells   总被引:5,自引:0,他引:5  
Ghrelin is a novel brain-gut peptide that stimulates food intake and body weight gain. We studied the anabolic effect of ghrelin in a cancer cachexia mouse model. SEKI, a human melanoma cell line, was inoculated into nude mice to examine the effects of ghrelin on food intake and body weight. The intraperitoneal administration of ghrelin twice a day (6 nmol/mice/day) for 6 days suppressed weight loss in SEKI-inoculated mice and increased the rate of weight gain in vehicle-treated nude mice. Ghrelin administration also increased food intake in both SEKI- and vehicle-treated mice. Both the weight of white adipose tissue and the plasma leptin concentration were reduced in tumor-inoculated mice compared with vehicle-treated mice; these factors increased following ghrelin administration. The levels of both ghrelin peptide and mRNA in the stomach were upregulated in tumor-inoculated mice. The anabolic effect of ghrelin efficiently reverses the cachexia in mice bearing SEKI human melanoma. Ghrelin therefore may have a therapeutic ability to ameliorate cancer cachexia.  相似文献   

20.
Ghrelin is an endogenous growth hormone (GH) secretagogue recently isolated from the stomach. Although it possesses a strong GH releasing activity in vitro and in vivo, its physiological significance in endogenous GH secretion remains unclear. The aim of this study was to characterize plasma ghrelin levels in acromegaly and growth hormone deficiency (GHD). We investigated plasma total and active ghrelin in 21 patients with acromegaly, 9 patients with GHD and 24 age-, sex- and BMI-matched controls. In all subjects, we further assessed the concentrations of leptin, soluble leptin receptor, insulin, IGF-I, free IGF-I and IGFBP-1, 2, 3 and 6. Patients with acromegaly and GHD as well as control subjects showed similar levels of total ghrelin (controls 2.004+/-0.18 ng/ml, acromegalics 1.755+/-0.16 ng/ml, p=0.31, GHD patients 1.704+/-0.17 ng/ml, p=0.35) and active ghrelin (controls 0.057+/-0.01 ng/ml, acromegalics 0.047+/-0.01 ng/ml, p=0.29, GHD patients 0.062+/-0.01 ng/ml, p=0.73). In acromegalic patients plasma total ghrelin values correlated negatively with IGF-I (p<0.05), in GHD patients active ghrelin correlated with IGF-I positively (p<0.05). In the control group, total ghrelin correlated positively with IGFBP-2 (p<0.05) and negatively with active ghrelin (p=0.05), BMI (p<0.05), WHR (p<0.05), insulin (p=0.01) and IGF-I (p=0.05). Plasma active ghrelin correlated positively with IGFBP-3 (p=0.005) but negatively with total ghrelin and free IGF-I (p=0.01). In conclusion, all groups of the tested subjects showed similar plasma levels of total and active ghrelin. In acromegaly and growth hormone deficiency plasma ghrelin does not seem to be significantly affected by changes in GH secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号