首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 池栽试验条件下,设置渍水、干旱和对照3个水分处理,每个水分处理下设置两个施氮水平 ,研究了花后渍水或干旱逆境下氮素营养对两个不同类型小麦(Triticum aestivum) 品种籽粒产量和品质性状的影响。结果表明,与对照相比,花后渍水或干旱处理显著降低了小麦的千粒重、穗粒数和籽粒产量。在适宜水分和干旱条件下,增施氮肥增加了小麦籽粒产量,而在渍水条件下,增施氮肥降低了产量。干旱处理提高了蛋白质含量,干、湿面 筋含量,沉降值和降落值;而渍水处理则降低了小麦籽粒蛋白质含量和干、湿面筋含量。同 一水分处理下,增施氮肥提高了蛋白质含量,谷蛋白/醇溶蛋白比,支链淀粉含量和支/直链淀粉比。在小麦籽粒主要品质性状上存在显著的水氮互作效应,且水分、氮肥及水氮互作效 应对小麦籽粒产量和品质的影响因品种的不同而异。  相似文献   

2.
选用 6个不同品质类型小麦品种在 4个生态点进行分期播种试验, 系统分析了不同生态环境下小麦籽粒产量与品质的变异特征及其与主要气候生态因子间的关系。结果表明 :生态点、品种以及地点×品种互作对籽粒产量、千粒重、蛋白质、湿面筋和淀粉含量、沉降值与降落值的影响均达到显著水平 ;不同播种期处理对产量与淀粉含量的影响达到极显著水平, 而播种期×品种互作对千粒重、降落值、淀粉含量及沉降值的效应达到显著水平 ;地点×播种期×品种互作仅对产量、湿面筋、淀粉含量与沉降值有显著的影响。在 4个不同生态点中, 南京点的籽粒蛋白质与湿面筋含量最低, 但淀粉含量最高 ;徐州点的产量和千粒重最大 ;泰安点的蛋白质含量与湿面筋含量最高, 沉降值最小 ;保定点的产量、千粒重最小, 但沉降值最大。不同播种期处理下, 适播与晚播的籽粒蛋白质含量、湿面筋含量、淀粉含量、沉降值与降落值都显著高于早播, 而早播期的产量和千粒重最大。各小麦品种在不同地点与播种期下产量与品质性状的变异中以降落值的变异系数为最大, 淀粉的变异为最小。开花至成熟期的日均温与淀粉含量呈线性负相关, 与产量、蛋白质和湿面筋含量及降落值呈二次曲线相关关系 ;日温差与产量和千粒重呈二次曲线相关关系, 籽粒蛋白质和湿面筋含量、沉降值及降落值则随昼温差的增加线性递增 ;开花至成熟期降雨量与产量、千粒重都呈现先升后降的二次曲线相关关系, 而与籽粒蛋白质含量和降落值呈现线性负相关关系 ;籽粒蛋白质和湿面筋含量与降落值随开花至成熟期的累计日照时数呈现线性正相关关系。  相似文献   

3.
Heat stress during the grain-filling period is the main abiotic stress factor limiting grain yield and quality in wheat (Triticum aestivum L.). In this study, 64 wheat genotypes were exposed to heat stress during reproduction caused by delayed sowing in two growing seasons. Grain yield, 1000 grain weight (GW), grain hardness (GH), and grain-quality related traits were investigated. Heat stress caused a significant decrease in GW through reducing starch content (SC) and a non-compensating rise in protein content (PC), and thereby resulted in lower yield. In addition, significant increases in flour water absorption (WA), Zeleny sedimentation volume (ZT), ash content (AC), lipid content (LC), loaf volume (LV), wet gluten content (WG), dry gluten content (DG), gluten index (GI), and amylopectin content (APC) were found following heat stress. In contrast, decreases in grain moisture content (MC) and amylose content (AMC) induced by heat stress were observed. The heat-tolerant genotypes were superior in grain yield, GW, SC, AMC, and MC. While the sensitive genotypes contained higher PC, LV, GI and AMP. A group of wheat genotypes characterized with a higher yield, AMC, GW, and SC as well as lower PC, WA, GH, ZT, and LV; and was found to be the most heat tolerant by principal component analysis. Lighter weight and smaller grains produce a smaller starchy endosperm with lower quality (less amylose) and higher grain protein content in heat stress compared to normal conditions. Heat stress caused by delayed sowing improves some of the baking-quality related traits.  相似文献   

4.
选用强筋小麦品种济麦20和弱筋小麦品种山农1391,在大田试验条件下,分别于籽粒灌浆前期(花后6—9 d)、中期(花后16—19 d)和后期(花后26—29 d)对小麦进行弱光照处理,研究了籽粒产量、蛋白质组分及加工品质的变化。灌浆期弱光显著降低小麦籽粒产量,灌浆中期对济麦20和灌浆后期对山农1391的产量降幅最大。弱光处理后,籽粒氮素积累量及氮素收获指数减少。但弱光使籽粒蛋白质含量显著升高,其中灌浆中期弱光升幅最大,原因可能是由于其粒重降低造成的。弱光对可溶性谷蛋白无显著影响,但增加不溶性谷蛋白含量,使谷蛋白聚合指数显著升高,面团形成时间和稳定时间亦升高,籽粒灌浆中、后期弱光对上述指标的影响较前期大。灌浆期短暂的弱光照对改善强筋小麦粉质仪参数有利,但使弱筋小麦变劣;并均伴随籽粒产量的显著降低这一不利影响。  相似文献   

5.
 防雨池栽条件下研究了花后干旱和渍水胁迫对两个不同品质类型小麦(Triticum aestivum)品种籽粒产量和品质形成的影响。结果表明,花后渍水和干旱处理明显降低了小麦籽粒产量和蛋白质产量。在整个灌浆期内干旱处理明显提高了籽粒蛋白质和醇溶蛋白含量,而渍水处理降低了籽粒蛋白质及其组分的积累量。籽粒总淀粉和直链淀粉含量以渍水处理最高,而支链淀粉以对照最高。干旱处理提高了籽粒干、湿面筋含量、沉降值和降落值,而渍水处理降低了上述品质指标。试验表明干旱和渍水胁迫对小麦籽粒蛋白质与淀粉的含量和组分及面粉品质等均有不同程度的影响,从而改变了不同品质类型小麦的籽粒品质。  相似文献   

6.
基因型与生态环境对小麦籽粒品质与蛋白质组分的影响   总被引:47,自引:4,他引:43  
荆奇  姜东  戴廷波  曹卫星 《应用生态学报》2003,14(10):1649-1653
通过2年3点试验,研究了40个小麦(Triticum aestivum)品种(品系)籽粒品质性状和蛋白质组分含量的变异。结果表明,籽粒品质和蛋白质组分在基因型间存在较大的差异;根据小麦籽粒品质的综合性状,可将40个小麦品种(品系)分为6组不同的品质类型,在本试验点的生态环境条件下。基本以中筋及弱筋小麦为主;生态环境对小麦籽粒的容重、沉降值、湿面筋含量、蛋白质含量、赖氨酸含量与蛋白质组分含量均有极显著的影响,而面筋指数、淀粉含量和直链淀粉含量对环境反应不敏感,适宜的生态环境条件有利于形成合理的谷蛋白/醇溶蛋白比。面粉面筋质量好,基因型与生态环境的互作对小麦籽粒品质。谷蛋白与醇溶蛋白及两者的比值有显著影响,对球蛋白影响不大,而面粉蛋白质含量、面筋含量、沉降值及千粒重主要受基因的表达和环境的独立影响,蛋白质组分含量在基因型间和环境间的变化与小麦籽粒烘烤品质密切相关。  相似文献   

7.
The agronomic and physiological traits, drought tolerance indexes, principal component analysis and Ward`s method were applied to assess the differences among 20 wheat genotypes in response to drought. Statistically significant correlation was observed for measured traits. Drought susceptibility index (DSI), stress tolerance index (STI) and stress index (SI) were most useful to identify genotypes differing in their response to drought. Utility of the indexes was confirmed by physiological markers of drought tolerance i.e. membrane injury and leaf water status. Variation of the genotypes in biomass and grain yield during drought stress was also verified by clustering methods. Finally, integration of physiological and statistical methods presented in this work, allows to both, indicate that tolerance to drought in wheat has a common genetic background, and select the most diverse genotypes. Based on the results, we recommend a tool for breeders, useful to select the genotypes resistant and sensitive to drought.

Abbreviations: DM: dry matter; DSI: drought susceptibility index; FWC: field water capacity; GY: grain yield; GMP: geometric mean productivity index; H: plant height; LI: leakage index related to membrane injury; MPRO: mean productivity index; MHAR: harmonic mean index; NoT: number of tillers; NoG, W-1000: number of grains and weight of 1000 grains, respectively; NoLMT, NoLAT, NoLT: number of leaves on main tiller, adventitious tillers and total leaf number, respectively; PCA: principal component analysis; RTC: relative trait change; RWC, RT, WD: relative water content, relative turgidity and water deficit, respectively SI: stress index; SPAD: leaf greening; STI: stress tolerance index; TI: tolerance index; WCA: Ward`s cluster analysis.  相似文献   


8.
Released and pre-released bread wheat varieties evaluated in national wheat programme of India (503 genotypes) during 2005–14 under different environments were examined for the role of physiological parameters in grain quality. Genotypes with slow plant height growth but faster rate of grain filling enhanced protein content. Plants where growth in height and grain development was slow, grains were hard, provided proportionate vegetative growth phase is longer. Steady grain growth rate benefited gluten strength and gluten quality. Irrespective of total crop duration, longer reproductive phase was an effective indicator of higher flour recovery and test weight. Magnitude and significance of morphological attributes in grain quality was almost similar to that of physiological processes, therefore prospects of utilizing these field traits were examined to enhance grain properties. Early heading and longer grain filling was effective to increase test weight whereas delayed heading and shorter plant height enhanced protein content. Bold grains hampered grain hardness and delayed heading added more bran in the flour. Genotypes with poor grain bearing and quick grain ripening had lower sedimentation value. Instead of protein, it was wet gluten which expressed negative association with yield. To improvise gluten quality, extended reproductive phase but with less grain weight was helpful. Contribution of longer post-anthesis period was observed crucial in flour recovery. These useful simple field expressions can be deployed to uplift quality of wheat grains.  相似文献   

9.
The unpredictability and large fluctuation of the climatic conditions in rainfed regions do affect spring wheat yield and grain quality. These variations offer the opportunity for the production of better quality wheat. The effect of variable years, locations and sowing managements on wheat grain yield and quality was studied through field experiments using three genotypes, three locations for two years under rainfed conditions. The two studied years as contrasting years at three locations and sowing dates depicted variability in temperature and water stress during grain filling which resulted considerable change in grain yield and quality. Delayed sowing, years (2009–10) and location (Talagang) with high temperature and water stress resulted increased proline, and grain quality traits i.e. grain protein (GP) and grain ash (GA) than optimum conditions (during 2008–09, at Islamabad and early sowing). However, opposite trend was observed for dry gluten (DG), sodium dodecyl sulphate (SDS), SPAD content and grain yield irrespective of genotypes. The influence of variable climatic conditions was dominant in determining the quality traits and inverse relationship was observed among some quality traits and grain yield. It may be concluded that by selecting suitable locations and different sowing managements for subjecting the crop to desirable environmental conditions (temperature and water) quality traits of wheat crop could be modified.  相似文献   

10.
Rice is one of the most important food crop drastically affected by drought in lowland rice ecosystem. Dissecting out the traits of importance and genomic regions influencing the response of drought tolerance and yield traits on grain yield will aid the breeders to know the genetic mechanism of drought tolerance of rice leads to the development of drought tolerant varieties. Grain yield and its components on drought situation of recombinant inbred population (IR 58821/IR 52561) were investigated under lowland managed stress situation in 2003 and 2004 by given importance to the relative water content. Water deficit resulted in significant effect on phenology and grain yield. Best lines were selected for further varietal development programme. Variability studies showed the traits viz., days to 70% relative water content, leaf rolling, leaf drying, harvest index, biomass yield and grain yield offer high scope for improvement for drought tolerance by way of simple selection technique. Correlation and path analysis indicated that, to harness high yielding combined with drought tolerance breeders should give selection pressure on relative water content, panicle length, grains per panicle, harvest index, biomass yield, root/shoot ratio and root length in positive direction, and low scores of leaf rolling, leaf drying and drought recovery rate. Analysis of quantitative trait loci for drought tolerance, yield and its components allowed the identification of 38 regions associated with both drought tolerant and yield traits. Out of these, 18 were closely linked with DNA markers could be used for marker assisted selection in breeding for drought tolerance in rice. Pleiotropism and G × E effects interaction were noticed in some of the traits. Parent IR 58821 contributed favorable alleles for the entire drought related and most of the yield component traits. Identification of traits of importance and their nature of relationship by morphological and molecular level under lowland condition will be useful to improve drought tolerance of rice.  相似文献   

11.
Brief heat events (1–3 days, >30 °C) commonly reduce wheat (Triticum aestivum L.) grain size and consequently yield. To identify mechanisms of tolerance to such short heat events, 36 wheat genotypes were treated under day/night temperatures of 37 °C/27 °C for 3-days in a growth chamber, at 10 days after anthesis, and a range of developmental, chlorophyll and yield-related traits monitored. The degree of flag leaf chlorophyll loss during the treatment was the variable that showed the highest correlation to grain weight loss (r = 0.63; p < 0.001), identifying chlorophyll stability during this brief period as a potential determinant or indicator of grain weight stability under heat. Variables summarizing the combined during- and post-heat chlorophyll losses showed similar or lower correlations with heat tolerance of grain filling, despite the fact that genotypes varied in their ability to resume normal chlorophyll loss rates after the heat treatment. Additionally, heat tolerance of grain size showed no correlation with grain filling duration or traits relating to utilization of stem carbon reserves under heat stress. Measurement of chlorophyll loss over a forecasted heat wave was thereby identified as a potential basis for developing tools to help breeders select heat tolerant genotypes.  相似文献   

12.
李诚永  蔡剑  姜东  戴廷波  曹卫星 《生态学报》2011,31(7):1904-1910
以扬麦9号为材料,研究花前渍水预处理对花后渍水逆境下小麦籽粒产量和品质的影响。结果表明,与未进行渍水预处理相比,花前渍水预处理提高了小麦植株对花后渍害的抗性,生物产量、收获指数和千粒重显著提高,进而显著提高了籽粒产量;花前渍水预处理显著提高花后氮素积累量及其对籽粒氮素的贡献率,降低了花前贮藏氮素运转量及其对籽粒氮素的贡献率,进而引起籽粒球蛋白含量提高,但显著降低了清蛋白、醇溶蛋白、谷蛋白和全蛋白质含量、以及干湿面筋含量和沉降值;花前渍水预处理还提高了籽粒直链淀粉和总淀粉含量和降落值,降低了支/直链淀粉比,显著提高了面粉峰值粘度、低谷粘度、崩解值、最终粘度、回冷值和峰值时间,但对糊化温度无显著影响。  相似文献   

13.
Development of high-yielding wheat varieties with good end-use quality has always been a major concern for wheat breeders. To genetically dissect quantitative trait loci (QTLs) for yield-related traits such as grain yield, plant height, maturity, lodging, test weight and thousand-grain weight, and for quality traits such as grain and flour protein content, gluten strength as evaluated by mixograph and SDS sedimentation volume, an F1-derived doubled haploid (DH) population of 185 individuals was developed from a cross between a Canadian wheat variety “AC Karma” and a breeding line 87E03-S2B1. A genetic map was constructed based on 167 marker loci, consisting of 160 microsatellite loci, three HMW glutenin subunit loci: Glu-A1, Glu-B1 and Glu-D1, and four STS-PCR markers. Data for investigated traits were collected from three to four environments in Manitoba, Canada. QTL analyses were performed using composite interval mapping. A total of 50 QTLs were detected, 24 for agronomic traits and 26 for quality-related traits. Many QTLs for correlated traits were mapped in the same genomic regions forming QTL clusters. The largest QTL clusters, consisting of up to nine QTLs, were found on chromosomes 1D and 4D. HMW glutenin subunits at Glu-1 loci had the largest effect on breadmaking quality; however, other genomic regions also contributed genetically to breadmaking quality. QTLs detected in the present study are compared with other QTL analyses in wheat.  相似文献   

14.
Salinity and drought are important agro-environmental problems occurring separately as well as together with the combined occurrence increasing with time due to climate change. Screening of bread wheat genotypes against salinity or drought alone is common; however, little information is available on the response of wheat genotypes to a combination of these stresses. This study investigates the response of a salt-resistant (SARC-1) and a salt-sensitive (7-Cerros) wheat genotype to drought at different growth stages under non-saline (ECe 2.1 dS m?1) and saline soil (ECe 15 dS m?1) conditions. Drought was applied by withholding water for 21 days at a particular growth stage viz. tillering, booting, and grain filling stages. At booting stage measurements regarding water relations, leaf ionic composition and photosynthetic attributes were made. At maturity grain yield and different yield, components were recorded. Salinity and drought significantly decreased grain yield and different yield components with a higher decrease in the case of combined stress of salinity × drought. The complete drought treatment (drought at tillering + booting + grain filling stages) was most harmful for wheat followed by drought at booting stage and grain filling–tillering stages, respectively. The salt-resistant wheat genotype SARC-1 performed better than the salt-sensitive genotype 7-Cerros in different stress treatments. A decrease in the water and turgor potentials, photosynthetic and transpiration rates, stomatal conductance, leaf K+, and increased leaf Na+ were the apparent causes of growth and yield reduction of bread wheat due to salinity, drought, and salinity × drought.  相似文献   

15.
Fifteen wheat genotypes were grown under water deficit to ascertain the role of osmotic adjustment (OA) and the concentration of benzoxazinones in sustaining grain yield. A positive correlation between osmotic adjustment capacity and yield was observed in wheat genotypes cultivated under field conditions. The weight gain of plants exposed to drought was in agreement with the OA values (R(2) = 0.93). However, when wheat plants were infested by cereal aphids, this correlation was not found. The benzoxazinones 2,4-dihydroxy-1,4-benzoxa-zin-3-one (DIBOA) and 2,4-dihydroxy-7-methoxy-1,4 benzoxazin-3-one (DIMBOA) are defensive secondary metabolites present in wheat and others cereals. The content of these compounds varied in wheat genotypes and increased with drought and aphid infestation. A positive correlation between weight gain of irrigated-infested plants and drought-infested plants and the contents of benzoxazinones was observed. These results suggest that plants with better OA capacity and high benzoxazinone content should have better field yields.  相似文献   

16.
刘永环  贺明荣  王晓英  张洪华 《生态学报》2009,29(11):5930-5935
选用强筋小麦品种济麦20、烟农19、藁麦8901做试验材料,设置不同氮肥基追比例和籽粒灌浆中后期高温胁迫处理,研究了不同氮肥基追比例对高温胁迫条件下小麦籽粒产量和品质的影响.研究结果表明,追氮比例由50%增加到70%,3个品种的千粒重、籽粒产量、粗蛋白含量、湿面筋含量、醇溶蛋白含量、谷蛋白含量、HMW-GS含量、LMW-GS含量、HMW-GS/LMW-GS比值显著提高.济麦20和烟农19的谷蛋白大聚合体含量、谷蛋白大聚合体体积加权平均粒径和表面积加权平均粒径因追氮比例提高而升高, 藁麦8901则无显著变化.济麦20和烟农19的面团形成时间、面团稳定时间因追氮比例提高而延长, 藁麦8901基本不受影响.追氮比例由50%增加到70%,3个品种的籽粒支链淀粉/直链淀粉比值显著降低,淀粉糊化高峰黏度、低谷黏度、稀懈值、最终黏度和反弹值相应降低.总之,提高氮肥追施比例可在一定程度上缓解灌浆期高温胁迫对小麦粒重和蛋白质质量的不利影响,但对淀粉质量产生负面效应,且品种间存在差异.  相似文献   

17.
Enhancing drought tolerance of crops has been a great challenge in crop improvement. Here, we report the maize phosphoenolpyruvate carboxylase (PEPC) gene was able to confer drought tolerance and increase grain yield in transgenic wheat (Triticum aestivum L.) plants. The improved of drought tolerance was associated with higher levels of proline, soluble sugar, soluble protein, and higher water use efficiency. The transgenic wheat plants had also a more extensive root system as well as increased photosynthetic capacity during stress treatments. The increased grain yield of the transgenic wheat was contributed by improved biomass, larger spike and grain numbers, and heavier 1000-grain weight under drought-stress conditions. Under non-stressed conditions, there were no significant increases in these of the measured traits except for photosynthetic rate when compared with parental wheat. Proteomic research showed that the expression levels of some proteins, including chlorophyll A-B binding protein and pyruvate, phosphate dikinase, which are related to photosynthesis, PAP fibrillin, which is involved in cytoskeleton synthesis, S-adenosylmethionine synthetase, which catalyzes methionine synthesis, were induced in the transgenic wheat under drought stress. Additionally, the expression of glutamine synthetase, which is involved in ammonia assimilation, was induced by drought stress in the wheat. Our study shows that PEPC can improve both stress tolerance and grain yield in wheat, demonstrating the efficacy of PEPC in crop improvement.  相似文献   

18.
Water status parameters, flag leaf photosynthetic activity, abscisic acid (ABA) levels, grain yield, and storage protein contents were investigated in two drought-tolerant (Triticum aestivum L. cv. MV Emese and cv. Plainsman V) and two drought-sensitive (cvs. GK élet and Cappelle Desprez) wheat genotypes subjected to soil water deficit during grain filling to characterize physiological traits related to yield. The leaf water potential decreased earlier and at a higher rate in the sensitive than in the tolerant cultivars. The net CO2 assimilation rate (P N) in flag leaves during water deficit did not display a strict correlation with the drought sensitivity of the genotypes. The photosynthetic activity terminated earliest in the tolerant cv. Emese, and the senescence of flag leaves lasted 7 days longer in the sensitive Cappelle Desprez. Soil drought did not induce characteristic differences between sensitive and tolerant cultivars in chlorophyll a fluorescence parameters of flag leaves during post-anthesis. Changes in the effective quantum yield of PSII (ΦPSII) and the photochemical quenching (qP) depended on the genotypes and not on the sensitivity of cultivars. In contrast, the levels of ABA in the kernels displayed typical fluctuations in the tolerant and in the sensitive cultivars. Tolerant genotypes exhibited an early maximum in the grain ABA content during drought and the sensitive cultivars maintained high ABA levels in the later stages of grain filling. In contrast with other genotypes, the grain number per ear did not decrease in Plainsman and the gliadin/glutenin ratio was higher than in the control in Emese during drought stress. A possible causal relationship between high ABA levels in the kernels during late stages of grain filling and a decreased grain yield was found in the sensitive cultivars during drought stress.  相似文献   

19.
Drought is the major detrimental environmental factor for wheat (Triticum aestivum L.) production. The exploration of genetic patterns underlying drought tolerance is of great significance. Here we report the gene actions controlling the phenological traits using the line × tester model studying 27 crosses and 12 parents under normal irrigation and drought conditions. The results interpreted via multiple analysis (mean performance, correlations, principal component, genetic analysis, heterotic and heterobeltiotic potential) disclosed highly significant differences among germplasm. The phenological waxiness traits (glume, boom, and sheath) were strongly interlinked. Flag leaf area exhibits a positive association with peduncle and spike length under drought. The growing degree days (heat-units) greatly influence spikelets and grains per spike, however, the grain yield/plant was significantly reduced (17.44 g to 13.25 g) under drought. The principal components based on eigenvalue indicated significant PCs (first-seven) accounted for 79.9% and 73.9% of total variability under normal irrigation and drought, respectively. The investigated yield traits showed complex genetic behaviour. The genetic advance confronted a moderate to high heritability for spikelets/spike and grain yield/plant. The traits conditioned by dominant genetic effects in normal irrigation were inversely controlled by additive genetic effects under drought and vice versa. The magnitude of dominance effects for phenological and yield traits, i.e., leaf twist, auricle hairiness, grain yield/plant, spikelets, and grains/spike suggests that selection by the pedigree method is appropriate for improving these traits under normal irrigation conditions and could serve as an indirect selection index for improving yield-oriented traits in wheat populations for drought tolerance. However, the phenotypic selection could be more than effective for traits conditioned by additive genetic effects under drought. We suggest five significant cross combinations based on heterotic and heterobeltiotic potential of wheat genotypes for improved yield and enhanced biological production of wheat in advanced generations under drought.  相似文献   

20.

Key message

We identified 27 stable loci associated with agronomic traits in spring wheat using genome-wide association analysis, some of which confirmed previously reported studies. GWAS peaks identified in regions where no QTL for grain yield per se has been mapped to date, provide new opportunities for gene discovery and creation of new cultivars with desirable alleles for improving yield and yield stability in wheat.

Abstract

We undertook large-scale genetic analysis to determine marker-trait associations (MTAs) underlying agronomic and physiological performance in spring wheat using genome-wide association studies (GWAS). Field trials were conducted at seven sites in three countries (Sudan, Egypt, and Syria) over 2–3 years in each country. Twenty-five agronomic and physiological traits were measured on 188 wheat genotypes. After correcting for population structure and relatedness, a total of 245 MTAs distributed over 66 loci were associated with agronomic traits in individual and mean performance across environments respectively; some of which confirmed previously reported loci. Of these, 27 loci were significantly associated with days to heading, thousand kernel weight, grain yield, spike length, and leaf rolling for mean performance across environments. Despite strong QTL by environment interactions, eight of the loci on chromosomes 1A, 1D, 5A, 5D, 6B, 7A, and 7B had pleiotropic effects on days to heading and yield components (TKW, SM?2, and SNS). The winter-type alleles at the homoeologous VRN1 loci significantly increased days to heading and grain yield in optimal environments, but decreased grain yield in heat prone environments. Top 20 high-yielding genotypes, ranked by additive main effects and multiplicative interaction (AMMI), had low kinship relationship and possessed 4–5 favorable alleles for GY MTAs except two genotypes, Shadi-4 and Qafzah-11/Bashiq-1–2. This indicated different yield stability mechanisms due to potentially favorable rare alleles that are uncharacterized. Our results will enable wheat breeders to effectively introgress several desirable alleles into locally adapted germplasm in developing wheat varieties with high yield stability and enhanced heat tolerance.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号