首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ligand-binding properties of the maize (Zea mays L.) cytokinin receptors ZmHK1, ZmHK2, and ZmHK3a have been characterized using cytokinin binding assays with living cells or membrane fractions. According to affinity measurements, ZmHK1 preferred N(6)-(Δ(2)-isopentenyl)adenine (iP) and had nearly equal affinities to trans-zeatin (tZ) and cis-zeatin (cZ). ZmHK2 preferred tZ and iP to cZ, while ZmHK3a preferred iP. Only ZmHK2 had a high affinity to dihydrozeatin (DZ). Analysis of subcellular fractions from leaves and roots of maize seedlings revealed specific binding of tZ in the microsome fraction but not in chloroplasts or mitochondria. In competitive binding assays with microsomes, tZ and iP were potent competitors of [(3)H]tZ while cZ demonstrated significantly lower affinity; adenine was almost ineffective. The binding specificities of microsomes from leaf and root cells for cytokinins were consistent with the expression pattern of the ZmHKs and our results on individual receptor properties. Aqueous two-phase partitioning and sucrose density-gradient centrifugation followed by immunological detection with monoclonal antibody showed that ZmHK1 was associated with the endoplasmic reticulum (ER). This was corroborated by observations of the subcellular localization of ZmHK1 fusions with green fluorescent protein in maize protoplasts. All these data strongly suggest that at least a part of cytokinin perception occurs in the ER.  相似文献   

2.
cis-Zeatin (cZ) is generally regarded as a cytokinin with little or no activity, compared with the highly active trans-zeatin (tZ). Although recent studies suggested possible roles for cZ, its physiological significance remains unclear. In our studies with rice (Oryza sativa), cZ inhibited seminal root elongation and up-regulated cytokinin-inducible genes, and its activities were comparable to those of tZ. Tracer experiments showed that exogenously supplied cZ-riboside was mainly converted into cZ derivatives but scarcely into tZ derivatives, indicating that isomerizations of cZ derivatives into tZ derivatives are a minor pathway in rice cytokinin metabolism. We identified three putative cZ-O-glucosyltransferases (cZOGT1, cZOGT2, and cZOGT3) in rice. The cZOGTs preferentially catalyzed O-glucosylation of cZ and cZ-riboside rather than tZ and tZ-riboside in vitro. Transgenic rice lines ectopically overexpressing the cZOGT1 and cZOGT2 genes exhibited short-shoot phenotypes, delay of leaf senescence, and decrease in crown root number, while cZOGT3 overexpressor lines did not show shortened shoots. These results propose that cZ activity has a physiological impact on the growth and development of rice.  相似文献   

3.
Glucosides of trans-zeatin occur widely in plant tissues, formed either by O-glucosylation of the hydroxylated side chain or N-glucosylation of the purine ring structure. O-Glucosylation is stereo-specific: the O-glucosyltransferase encoded by the Phaseolus lunatus ZOG1 gene has high affinity for trans-zeatin as the substrate, whereas the enzyme encoded by the maize (Zea mays) cisZOG1 gene prefers cis-zeatin. Here we show that hydroxylated derivatives of benzyladenine (topolins) are also substrates of ZOG1 and cisZOG1. The m-OH and o-OH derivatives are the preferred substrate of ZOG1 and cisZOG1, respectively. Among the hydroxylated derivatives of thidiazuron tested, the only enzyme/substrate combination resulting in conversion was cisZOG1/(o-OH) thidiazuron. The abilities of these cytokinins to serve as substrates to the glucosyltransferases were in a large part correlated with their biological activities in the P. lunatus callus bioassay, indicating that there may be similarities between cytokinin-binding sites on the enzymes and cytokinin receptors. Further support for this interpretation is provided by cytokinin recognition studies involving the Arabidopsis (Arabidopsis thaliana) CRE1/WOL/AHK4 and maize ZmHK1 receptors. The AHK4 receptor responded to trans-zeatin and m-topolin, while the ZmHK1 receptor responded also to cis-zeatin and o-topolin. Three-dimensional molecular models of the substrates were applied to explain the results.  相似文献   

4.
Rational design is one of the latest ways how to evaluate particular activity of signal molecules, for example cytokinin derivatives. A series of N(6)-[(3-methylbut-2-en-1-yl)amino]purine (iP) derivatives specifically substituted at the N9 atom of purine moiety by tetrahydropyran-2-yl, ethoxyethyl, and C2-C4 alkyl chains terminated by various functional groups were prepared. The reason for this rational design was to reveal the relationship between specific substitution at the N9 atom of purine moiety of iP and cytokinin activity of the prepared compounds. The synthesis was carried out either via 6-chloro-9-substituted intermediates prepared originally from 6-chloropurine, or by a direct alkylation of N9 atom of N(6)-[(3-methylbut-2-en-1-yl)amino]purine. Selective reduction was implemented in the preparation of compound N(6)-[(3-methylbut-2-en-1-yl)amino]-9-(2-aminoethyl-amino)purine (12) when 6-[(3-methylbut-2-en-1-yl)amino]-9-(2-azidoethyl)purine (7) was reduced by zinc powder in mild conditions. The prepared derivatives were characterized by C, H, N elemental analyses, thin layer chromatography (TLC), high performance liquid chromatography (HPLC), melting point determinations (mp), CI+ mass spectral measurement (CI+ MS), and by (1)H NMR spectroscopy. Biological activity of prepared compounds was assessed in three in vitro cytokinin bioassays (tobacco callus, wheat leaf senescence, and Amaranthus bioassay). Moreover, the perception of prepared derivatives by cytokinin-sensitive receptor CRE1/AHK4 from Arabidopsis thaliana, as well as by the receptors ZmHK1 and ZmHK3a from Zea mays, was studied in a bacterial assay where the response to the cytokinin treatment could be specifically quantified with the aim to reveal the way of the perception of the above mentioned derivatives in two different plant species, that is, Arabidopsis, a model dicot, and maize, a model monocot. The majority of cytokinin derivatives were significantly active in both Amaranthus as well as in tobacco callus bioassay and almost inactive in detached wheat leaf senescence assay. N9-Substituted iP derivatives remained active in both in vitro bioassays in a broad range of concentrations despite the fact that most of the derivatives were unable to trigger the cytokinin response in CRE1/AHK4 and ZmHK1 receptors. However, several derivatives induced low but detectable cytokinin-like activation in maize ZmHK3a receptor. Compound 6-[(3-methylbut-2-en-1-yl)amino]-9-(tetrahydropyran-2-yl)purine (1) was also recognized by CRE1/AHK4 at high concentration ≥ 50 μM.  相似文献   

5.
Cytokinin signaling is vital for plant growth and development which function via the two-component system (TCS). As one of the key component of TCS, transmembrane histidine kinases (HK) are encoded by a small gene family in plants. In this study, we focused on expression and functional analysis of cytokinin receptor-like HK genes (ZmHK) in maize. Firstly, bioinformatics analysis revealed that seven cloned ZmHK genes have different expression patterns during maize development. Secondly, ectopic expression by CaMV35S promoter in Arabidopsis further revealed that functional differentiation exists among these seven members. Among them, the ZmHK1a2-OX transgenic line has the lowest germination rate in the dark, ZmHK1-OX and ZmHK2a2-OX can delay leaf senescence, and seed size of ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX was obviously reduced as compared to wild type. Additionally, ZmHK genes play opposite roles in shoot and root development; all ZmHK-OX transgenic lines display obvious shorter root length and reduced number of lateral roots, but enhanced shoot development compared with the wild type. Most notably, Arabidopsis response regulator ARR5 gene was up-regulated in ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX as compared to wild type. Although the causal link between ZmHK genes and cytokinin signaling pathway is still an area to be further elucidated, these findings reflected that the diversification of ZmHK genes expression patterns and functions occurred in the course of maize evolution, indicating that some ZmHK genes might play different roles during maize development.  相似文献   

6.
Strains of Escherichia coli that express two different cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, were used to study the relative sensitivity of these receptors to various cytokinins. Both receptors were most sensitive to the bases of the isoprenoid-type cytokinins trans-zeatin and isopentenyladenine but differed significantly in the recognition of other cytokinin compounds. In particular, CRE1/AHK4 recognized at 1 microm concentration only trans-zeatin while AHK3 recognized cis-zeatin and dihydrozeatin as well, although with a lower sensitivity. Similarly, CRE1/AHK4 was not activated by cytokinin ribosides and ribotides, but AHK3 was. Comparisons using the ARR5::GUS fusion gene as a cytokinin reporter in Arabidopsis showed similar relative degrees of responses in planta, except that cytokinins with aromatic side chains showed much higher activities than in the bacterial assay. These results indicate that the diverse cytokinin compounds might have specific functions in the numerous cytokinin-regulated processes, which may depend in turn on different receptors and their associated signalling pathways. The importance of precise control of local concentrations of defined cytokinin metabolites to regulate the respective downstream event is corroborated.  相似文献   

7.
8.
Plants produce the common isoprenoid precursors isopentenyl diphosphate and dimethylallyl diphosphate (DMAPP) through the methylerythritol phosphate (MEP) pathway in plastids and the mevalonate (MVA) pathway in the cytosol. To assess which pathways contribute DMAPP for cytokinin biosynthesis, metabolites from each isoprenoid pathway were selectively labeled with (13)C in Arabidopsis seedlings. Efficient (13)C labeling was achieved by blocking the endogenous pathway genetically or chemically during the feed of a (13)C labeled precursor specific to the MEP or MVA pathways. Liquid chromatography-mass spectrometry analysis demonstrated that the prenyl group of trans-zeatin (tZ) and isopentenyladenine is mainly produced through the MEP pathway. In comparison, a large fraction of the prenyl group of cis-zeatin (cZ) derivatives was provided by the MVA pathway. When expressed as fusion proteins with green fluorescent protein in Arabidopsis cells, four adenosine phosphate-isopentenyltransferases (AtIPT1, AtIPT3, AtIPT5, and AtIPT8) were found in plastids, in agreement with the idea that the MEP pathway primarily provides DMAPP to tZ and isopentenyladenine. On the other hand, AtIPT2, a tRNA isopentenyltransferase, was detected in the cytosol. Because the prenylated adenine moiety of tRNA is usually of the cZ type, the formation of cZ in Arabidopsis seedlings might involve the transfer of DMAPP from the MVA pathway to tRNA. Distinct origins of large proportions of DMAPP for tZ and cZ biosynthesis suggest that plants are able to separately modulate the level of these cytokinin species.  相似文献   

9.
10.
11.
trans-Zeatin is a major and ubiquitous cytokinin in higher plants. cis-Zeatin has traditionally been viewed as an adjunct with low activity and rare occurrence. Recent reports of cis-zeatin and its derivatives as the predominant cytokinin components in some plant tissues may call for a different perspective on cis-isomers. The existence of a maize (Zea mays) gene (cisZOG1) encoding an O-glucosyltransferase specific to cis-zeatin (R.C. Martin, M.C. Mok, J.E. Habben, D.W.S. Mok [2001] Proc Natl Acad Sci USA 98: 5922-5926) lends further support to this view. Results described here include the isolation of a second maize cisZOG gene, differential expression of cisZOG1 and cisZOG2, and identification of substantial amounts of cis-isomers in maize tissues. The open reading frame of cisZOG2 has 98.3% identity to cisZOG1 at the nucleotide level and 97.8% at the amino acid level. The upstream regions contain common and unique segments. The recombinant enzymes have similar properties, K(m) values of 46 and 96 microM, respectively, for cis-zeatin and a pH optimum of 7.5. Other cytokinins, including N(6)-(delta(2)-isopentenyl)adenine, trans-zeatin, benzyladenine, kinetin, and thidiazuron inhibited the reaction. Expression of cisZOG1 was high in maize roots and kernels, whereas cisZOG2 expression was high in roots but low in kernels. cis-Zeatin, cis-zeatin riboside, and their O-glucosides were detected in all maize tissues, with immature kernels containing very high levels of the O-glucoside of cis-zeatin riboside. The results are a clear indication that O-glucosylation of cis-zeatin is a natural metabolic process in maize. Whether cis-zeatin serves as a precursor to the active trans-isomer or has any other unique function remains to be demonstrated.  相似文献   

12.
Choi J  Lee J  Kim K  Cho M  Ryu H  An G  Hwang I 《Plant & cell physiology》2012,53(7):1334-1343
Cytokinins are involved in key developmental processes in rice (Oryza sativa), including the regulation of cell proliferation and grain yield. However, the in vivo action of histidine kinases (OsHks), putative cytokinin receptors, in rice cytokinin signaling remains elusive. This study examined the function and characteristics of OsHk3, 4 and 6 in rice. OsHk6 was highly sensitive to isopentenyladenine (iP) and was capable of restoring cytokinin-dependent ARR6 reporter expression in the ahk2 ahk3 Arabidopsis mutant upon treatment with 1 nM iP. OsHk4 recognized trans-zeatin (tZ) and iP, while OsHk3 scarcely induced cytokinin signaling activity. OsHk4 and OsHk6 mediated the canonical two-component signaling cascade of Arabidopsis to induce phosphorylation of ARR2. OsHk4 and OsHk6 were highly expressed in spikelets, suggesting that tZ and iP might play key roles in grain development. OsHk6 formed a self-interacting homomer in rice protoplasts, although the trans-phosphorylation activity between subunits was much lower than the intra-molecular trans-phosphorylation activity. This indicates that the action mechanism of OsHks is evolutionarily diverged from bacterial histidine kinases. Ectopic expression of OsHk6 in rice calli promoted green pigmentation and subsequent shoot induction, further supporting an OsHk6 in planta function as a cytokinin receptor. From the results of this study, OsHks are homomeric cytokinin receptors with distinctive cytokinin preferences in rice.  相似文献   

13.
14.
15.
The cytokinin bioassay based on retention of chlorophyll in excised oat leaf pieces is more sensitive to the synthetic cytokinins (6-benzylaminopurine and kinetin) than to the natural cytokinins (trans-zeatin and N6-[Δ2isopentenyl]adenine). This difference in sensitivity decreases with increasing length of leaf pieces (from 2 to 10 cm) and with increasing volume of application (from 5 μ1 to 25 μl). Application of the cytokinin solution to the basal and apical part of the 8 cm pieces decreases the sensitivity of the bioassay but has no significant effect on the relative activities of trans-zeatin and 6-benzylaminopurine. Using 7 cm pieces and 20 μl of solution the trans-zeatin and N6-(Δ2-isopentenyl)-adenine can be detected at concentrations of 10-5 M and 5 x 10-5 M, respectively.  相似文献   

16.
The cytokinin receptor AHK3 of Arabidopsis thaliana plays a predominant role in shoot development. A study of the hormone-binding characteristics of AHK3 compared with the mainly root-confined receptor CRE1/AHK4 has been accomplished using a live-cell binding assay on transgenic bacteria expressing individual receptor proteins. Both receptors bound trans-zeatin (tZ) with high affinity. Scatchard analysis showed a linear function corresponding to an apparent K(D) of 1-2 nM for the AHK3 receptor-hormone complex, which is close to the K(D) (2-4 nM) for the CRE1/AHK4 receptor-hormone complex. The specific binding of tZ to both receptors was pH dependent, AHK3 being more sensitive to pH changes than CRE1/AHK4. Hormone binding was reversible, at least for the bulk of (3)H-zeatin, and influenced by monovalent cations, while divalent cations (Ca(2+), Mg(2+), Mn(2+)) at physiological concentrations had no significant effect. AHK3 differed significantly from CRE1/AHK4 in relative affinity to some cytokinins. AHK3 had an approximately 10-fold lower affinity to isopentenyladenine (iP) and its riboside, but a higher affinity to dihydrozeatin than CRE1/AHK4. For AHK3, cytokinin ribosides (tZR, iPR) and cis-zeatin had true binding activity, although lower than that of tZ. The phenylurea-derived cytokinin thidiazuron was a strong competitor and bound to the same site as did adenine-derived cytokinins. The inhibitor of cytokinin action butan-1-ol had little effect on cytokinin-receptor complex formation. The revealed properties of AHK3 suggest its specific function in root-to-shoot communication.  相似文献   

17.
As many processes are regulated by both light and plant hormones, evaluation of diurnal variations of their levels may contribute to the elucidation of the complex network of light and hormone signal transduction pathways. Diurnal variation of cytokinin, auxin, and abscisic acid levels was tested in tobacco leaves (Nicotiana tabacum L. cv. Wisconsin 38) grown under a 16/8 h photoperiod. The main peak of physiologically active cytokinins (cytokinin bases and ribosides) was found after 9 h of light, i.e. 1 h after the middle of the light period. This peak coincided with the major auxin peak and was closely followed by a minor peak of abscisic acid. Free abscisic acid started to increase at the light/dark transition and reached its maximum 3 h after dark initiation. The content of total cytokinins (mainly N-glucosides, followed by cis-zeatin derivatives and nucleotides) exhibited the main peak after 9 h of light and the minor peak after the transition to darkness. The main, midday peak of active cytokinins was preceded by a period of minimal metabolic conversion of tritiated trans-zeatin (less than 30%). The major cytokinin-degrading enzyme, cytokinin oxidase/dehydrogenase (EC 1.5.99.12), exhibited maximal activity after the dark/light transition and during the diminishing of the midday cytokinin peak. The former peak might be connected with the elimination of the long-distance cytokinin signal. These cytokinin oxidase/dehydrogenase peaks were accompanied by increased activity of beta-glucosidase (EC 3.2.1.21), which might be involved in the hydrolysis of cytokinin O-glucosides and/or in fine-tuning of active cytokinin levels at their midday peak. The achieved data indicate that cytokinin metabolism is tightly regulated by the circadian clock.  相似文献   

18.
The nucleotide sequence of a Pseudomonas trans-zeatin producing gene (ptz) from the pCK1 plasmid of Pseudomonas syringae pv. savastanoi strain 1006 has been determined. This gene confers upon E. coli the ability to synthesize and secrete several cytokinins including trans-zeatin, iso-pentenyladenine and their respective N9-ribosyl derivatives. Sequence analysis indicates an open reading frame encoding a protein of 234 amino acids with a molecular weight of 26,816. Significant sequence homology is found between ptz and both the tzs and tmr genes from Agrobacterium tumefaciens. The results suggest a close relationship between the cytokinin biosynthetic pathways in P. savastanoi and A. tumefaciens.  相似文献   

19.
The plant phytohormone cytokinin plays an important role in many facets of plant growth and development by regulating cell division and differentiation. Recent studies have shed significant light into the mechanisms of cytokinin metabolism and signaling. However, little is known about how the hormone is transported in planta, although it has been proposed that the hormone is presumably transported in nucleoside-conjugated forms. Here, we report the identification and characterization of cytokinin transport ers in Arabidopsis. We previously reported that a gain-of-function mutation in the PGA22/AtIPT8 gene caused overproduction of cytokinins in planta. In an effort to screen for suppressor of pga22/atipt8 (soi) mutants, we identified a mutant soi33-1. Molecular and genetic analyses indicated that SOI33 encodes a putative equilibrative nucleoside transporter (ENT), previously designated as AtENT8. Members of this small gene family are presumed to be involved in the transport of nucleosides in eukaryotic cells. Under conditions of nitrogen starvation, loss-of-function mutations in SOI33/AtENT8 or in a related gene AtENT3 cause a reduced sensitivity to the nucleoside-type cytokinins isopentenyladenine riboside (iPR) and trans zeatin riboside (tZR), but display a normal response to the free base-type cytokinins isopentenyladenine (iP) and trans-zeatin (tZ). Conversely, overexpression of SOI33/AtENT8 renders transgenic plants hyper sensitive to iPR but not to iP. An in planta measurement experiment indicated that uptake efficiency of 3H labeled iPR was reduced more than 40% in soi33 and atent3 mutants. However, a mutation inAtENT1 had no substantial effect on the cytokinin response and iPR uptake efficiency. Our results suggest that SOI33/ AtENT8 and AtENT3 are involved in the transport of nucleoside-type cytokinins in Arabidopsis.  相似文献   

20.
The trans-zeatin secretion locus (tzs), from the nopaline Ti plasmid of Agrobacterium tumefaciens strain T37, was cloned and the nucleotide sequence determined. This gene is located in the virulence region of pTiT37. The tzs gene is responsible for the secretion of trans-zeatin into bacterial culture medium and in addition has the cytokinin biosynthetic activity, dimethylallylpyrophosphate:AMP dimethylallyltransferase. Sequence analysis showed an open reading frame of 729 nucleotides, capable of encoding a protein of 27,545 daltons. A single new labelled protein of 27,200 daltons was detected in Escherichia coli maxicells expressing the cloned tzs gene. Significant sequence homology was observed between the tzs and the published tmr sequence from pTiT37.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号