首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With growing environmental concerns over the use of chemical pesticides for insect control in both agriculture and forestry, increased emphasis is being placed on the development of alternative, biological pesticides such as genetically modified baculoviruses. Before the large-scale use of genetically modified viruses (GMV) can be realized, fate of GMV and their DNA in soil should be investigated. There are a number of factors that have the potential to affect persistence of both wild-type and genetically modified viruses and their DNA in soil. In this mini-review, the persistence of viral particles and DNA in soil is examined with particular emphasis on baculoviruses.  相似文献   

2.
Transmission of viruses to mosquito larvae mediated by divalent cations   总被引:2,自引:0,他引:2  
The two major groups of pathogenic viruses in mosquitoes are the occluded viruses, represented by baculoviruses and cypoviruses, and the non-occluded viruses, represented by the densoviruses and the iridoviruses. Baculoviruses, densoviruses, and iridoviruses are DNA viruses, while cypoviruses are the major group of RNA viruses reported from mosquitoes. Research on mosquito pathogenic viruses has been limited, in part, due to the inability to effectively transmit them to the larval mosquito host. Recently, there have been tremendous advancements in the ability to transmit mosquito baculoviruses and cypoviruses with the finding that transmission is mediated by divalent cations. Oral transmission of both baculoviruses and cypoviruses to mosquito larvae is enhanced by magnesium and inhibited by calcium ions. The current status of transmission for each of the major groups is reviewed with emphasis on the common role of divalent cations in transmission of the distantly related baculoviruses and cypoviruses.  相似文献   

3.
Insect pathogens, such as baculoviruses, that are used as microbial insecticides have been genetically modified to increase their speed of action. Nontarget species will often be exposed to these pathogens, and it is important to know the consequences of infection in hosts across the whole spectrum of susceptibility. Two key parameters, speed of kill and pathogen yield, are compared here for two baculoviruses, a wild-type Autographa californica nucleopolyhedrovirus (AcNPV), AcNPV clone C6, and a genetically modified AcNPV which expresses an insect-selective toxin, AcNPV-ST3, for two lepidopteran hosts which differ in susceptibility. The pathogenicity of the two viruses was equal in the less-susceptible host, Mamestra brassicae, but the recombinant was more pathogenic than the wild-type virus in the susceptible species, Trichoplusia ni. Both viruses took longer to kill the larvae of M. brassicae than to kill those of T. ni. However, whereas the larvae of T. ni were killed more quickly by the recombinant virus, the reverse was found to be true for the larvae of M. brassicae. Both viruses produced a greater yield in M. brassicae, and the yield of the recombinant was significantly lower than that of the wild type in both species. The virus yield increased linearly with the time taken for the insects to die. However, despite the more rapid speed of kill of the wild-type AcNPV in M. brassicae, the yield was significantly lower for the recombinant virus at any given time to death. A lower yield for the recombinant virus could be the result of a reduction in replication rate. This was investigated by comparing determinations of the virus yield per unit of weight of insect cadaver. The response of the two species (to both viruses) was very different: the yield per unit of weight decreased over time for M. brassicae but increased for T. ni. The implications of these data for risk assessment of wild-type and genetically modified baculoviruses are discussed.  相似文献   

4.
Baculoviruses, members of the family Baculoviridae, are large, enveloped viruses that contain a double‐stranded circular DNA genome of 80–180 kbp, encoding 90–180 putative proteins. These viruses are exclusively pathogenic for arthropods, particularly insects, and have been developed, or are being developed, as environmentally sound pesticides and eukaryotic vectors for foreign protein expression, surface display, gene delivery for gene therapy, vaccine production and drug screening. The baculoviruses contain a set of approximately 30 core genes that are conserved among all baculovirus genomes sequenced to date. Individual baculoviruses also contain a number of lineage‐ or species‐specific genes that have greatly impacted the diversification and evolution of baculoviruses. In this review, we first describe the general properties and biology of baculoviruses and then focus on the baculovirus genes and mechanisms involved in the replication, spread and survival of baculoviruses within the context of their diversity, evolution and insect manipulation.  相似文献   

5.
Baculoviruses-- re-emerging biopesticides   总被引:15,自引:0,他引:15  
Biological control of agricultural pests has gained importance in recent years due to increased pressure to reduce the use of agrochemicals and their residues in the environment and food. Viruses of a few families are known to infect insects but only those belonging to the highly specialized family Baculoviridae have been used as biopesticides. They are safe to people and wildlife, their specificity is very narrow. Their application as bioinsecticides was limited until recently because of their slow killing action and technical difficulties for in vitro commercial production. Two approaches for the wider application of baculoviruses as biopesticides will be implemented in future. In countries where use of genetically modified organisms is restricted, the improvements will be mainly at the level of diagnostics, in vitro production and changes in biopesticide formulations. In the second approach, the killing activity of baculoviruses may be augmented by genetic modifications of the baculovirus genome with genes of another natural pathogen. It is expected that the baculoviruses improved by genetic modifications will be gradually introduced in countries which have fewer concerns towards genetically modified organisms.  相似文献   

6.
Insect pathogens, such as baculoviruses, that are used as microbial insecticides have been genetically modified to increase their speed of action. Nontarget species will often be exposed to these pathogens, and it is important to know the consequences of infection in hosts across the whole spectrum of susceptibility. Two key parameters, speed of kill and pathogen yield, are compared here for two baculoviruses, a wild-type Autographa californica nucleopolyhedrovirus (AcNPV), AcNPV clone C6, and a genetically modified AcNPV which expresses an insect-selective toxin, AcNPV-ST3, for two lepidopteran hosts which differ in susceptibility. The pathogenicity of the two viruses was equal in the less-susceptible host, Mamestra brassicae, but the recombinant was more pathogenic than the wild-type virus in the susceptible species, Trichoplusia ni. Both viruses took longer to kill the larvae of M. brassicae than to kill those of T. ni. However, whereas the larvae of T. ni were killed more quickly by the recombinant virus, the reverse was found to be true for the larvae of M. brassicae. Both viruses produced a greater yield in M. brassicae, and the yield of the recombinant was significantly lower than that of the wild type in both species. The virus yield increased linearly with the time taken for the insects to die. However, despite the more rapid speed of kill of the wild-type AcNPV in M. brassicae, the yield was significantly lower for the recombinant virus at any given time to death. A lower yield for the recombinant virus could be the result of a reduction in replication rate. This was investigated by comparing determinations of the virus yield per unit of weight of insect cadaver. The response of the two species (to both viruses) was very different: the yield per unit of weight decreased over time for M. brassicae but increased for T. ni. The implications of these data for risk assessment of wild-type and genetically modified baculoviruses are discussed.  相似文献   

7.
Agricultural chemical companies have invested in the discovery and development of biological pesticides to complement synthetic pesticides for the control of insects, diseases, and weeds on agronomic and horticultural crops. For plant disease control, companies envisage biological fungicides entering markets where they have the best chance of performing and which are most receptive to using biological control methods. Fewer regulatory requirements can mean faster registration for a biological than a synthetic pesticide. However, industry’s requirements for competitive performance, effective formulations, and economic production can mean significant investments in time and money for a biological pesticide, although total investment may be less than for a synthetic pesticide. One biocontrol project in which industry has invested is baculoviruses for insect control. Insect baculoviruses, genetically modified to kill insects faster than wild-type viruses, are attractive biocontrol agents because their selectivity to insect pests and safety to beneficial insects and mammals enable them to compete with synthetic insecticides. Industry is looking for similar biocontrol opportunities in disease control. Biocontrol agents for seedling disease, root rot, and postharvest disease control have been registered by the EPA and are trying to compete with synthetic fungicides for market share. To date, effective biocontrol agents have not been identified for the control of serious foliar diseases, such as grape downy mildew, potato late blight, wheat powdery mildew, and apple scab. Farmers must rely on synthetic fungicides and agronomic methods to control these diseases for the foreseeable future. Received 06 February 1997/ Accepted in revised form 01 June 1997  相似文献   

8.
Baculoviruses as Vectors in Mammalian Cells   总被引:2,自引:1,他引:1  
The Baculoviridae are a large family of enveloped DNA viruses exclusively pathogenic to arthropods. Baculoviruses have been extensively used in insect cell-based recombinant protein expression system and as biological pesticides. They have been deomostrated to be safe to mammals, birds and fish. Recently, baculoviruses has been shown to transduce different mammalian cells in spite of the fact that they cannot replicate in mammalian cells (11, 73, 76). This has resulted in the development of baculoviruses as mammalian expression systems and even as vestors for gene therapy.  相似文献   

9.
All living organisms are continuously exposed to a plethora of viruses. In general, viruses tend to be restricted to the natural host species which they infect. From time to time viruses cross the host-range barrier expanding their host range. However, in very rare cases cross-species transfer is followed by the establishment and persistence of a virus in the new host species, which may result in disease. Recent examples of viruses that have crossed the species barrier from animal reservoirs to humans are hantavirus, haemorrhagic fever viruses, arboviruses, Nipah and Hendra viruses, avian influenza virus (AI), monkeypox virus, and the SARS-associated coronavirus (SARS-CoV). The opportunities for cross-species transfer of mammalian viruses have increased in recent years due to increased contact between humans and animal reservoirs. However, it is difficult to predict when such events will take place since the viral adaptation that is needed to accomplish this is multifactorial and stochastic. Against this background the intensified use of viruses and their genetically modified variants as viral gene transfer vectors for biomedical research, experimental gene therapy and for live-vector vaccines is a cause for concern. This review addresses a number of potential risk factors and their implications for activities with viral vectors from the perspective of cross-species transfer of viruses in nature, with emphasis on the occurrence of host-range mutants resulting from either cell culture or tropism engineering. The issues are raised with the intention to assist in risk assessments for activities with vector viruses.  相似文献   

10.
The Baculoviridae are a large family of enveloped DNA viruses exclusively pathogenic to arthropods. Baculoviruses have been extensively used in insect cell-based recombinant protein expression system and as biological pesticides. They have been deomostrated to be safe to mammals, birds and fish. Recently, baculoviruses has been shown to transduce different mammalian cells in spite of the fact that they cannot replicate in mammalian cells (11, 73, 76). This has resulted in the development of baculoviruses as mammalian expression systems and even as vestors for gene therapy. Foundation item: National Nature Science Foundations of China (30325002, 30470075).  相似文献   

11.
Baculoviruses have enormous potential for use as biopesticides to control insect pest populations without the adverse environmental effects posed by the widespread use of chemical pesticides. However, continuous baculovirus production is susceptible to DNA mutation and the subsequent production of defective interfering particles (DIPs). The amount of DIPs produced and their genome length distribution are of great interest not only for baculoviruses but for many other DNA and RNA viruses. In this study, we elucidate this aspect of virus replication using baculovirus as an example system and both experimental and modeling studies. The existing mathematical models for the virus replication process consider DIPs as a lumped quantity and do not consider the genome length distribution of the DIPs. In this study, a detailed population balance model for the cell‐virus culture is presented, which predicts the genome length distribution of the DIP population along with their relative proportion. The model is simulated using the kinetic Monte Carlo algorithm, and the results agree well with the experimental results. Using this model, a practical strategy to maintain the DIP fraction to near to its maximum and minimum limits has been demonstrated.  相似文献   

12.
Naturally occurring baculoviruses can be used to control a wide range of insect pests. Most baculoviruses are used as biopesticides, that is, they are sprayed onto high-density pest populations in a manner akin to the use of synthetic chemical pesticides. However, other strategies that use the biological features of the viruses are also possible and should increase as we expand our knowledge of baculovirus ecology. In order to develop a baculovirus control program, several areas need to be studied before progressing to large scale field studies and commercialization. These range from laboratory efficacy testing and the development of production systems to detailed study of pest behavior and the development of appropriate application strategies.  相似文献   

13.
Baculoviruses are orally infectious to insects and considered to be natural insecticides. To enhance their speed-of-kill these viruses were engineered to express arthropod neurotoxins under the control of various strong promoters. Although this strategy proved to be efficient, it raised recently concerns about safety. We analyzed the speed-of-kill and safety of Autographa californica multiple nucleopolyhedrovirus expressing the insecticidal scorpion neurotoxin AaIT and found that the mortality of Helicoverpa armigera larvae was enhanced significantly when the expression was controlled by the baculovirus delayed-early promoter 39K rather than the very late promoter p10. This improvement was also reflected in better protection of cotton leaves on which these insects were fed. Using lacZ as a sensitive reporter we also found that expression driven by the 39K promoter was detected in insect but not in mammalian cells. These results imply that by selection of an appropriate viral promoter, engineered baculoviruses may comply with the high standard biosafety requirements from a genetically modified organism (GMO). Our results provide further support for the potential use of engineered baculoviruses in insect pest control in a safely manner.  相似文献   

14.
Human health risks associated with changes in synthetic chemical pesticide use following the introduction of genetically modified crops are quantified in this article. Bacillus thuringiensis ( Bt ) cotton and herbicide-tolerant (HT) soybean, two genetically modified crops, were chosen as the focus for this study based on their global popularity. An innovative multimedia total exposure model, CalTOX, was used to calculate the health risks for two target populations, before and after the introduction of Bt cotton and HT soybean. Major results include the quantification of incremental lifetime cancer risk based on a time-weighted average exposure, and the quantification of hazard ratios for non-cancer effects based on the maximum exposure rate value, both computed over the exposure duration. Results show that human health risks are not intuitively and necessarily reduced with the reduction of pesticide use. For example, more trifluralin was used after the introduction of HT soybeans in Iowa and Minnesota, leading to higher risks. Moreover, the general population may have larger exposures to pesticides when compared with the population living in areas where pesticides are actually applied. This may occur because exposure to pesticides is not only dependent on geographical distance from the contaminated area, but also strongly dependent on other factors, such as the characteristic travel distance and environmental persistence.  相似文献   

15.
Large DNA viruses normally have complex structures with many of protein components derived from both viral and host origins. The development in proteomics, especially mass spectrometry identification techniques provide powerful tools for analyzing large viruses. In this review, we have summarized the recent achievements on proteomic studies of large DNA viruses, such as herpesvirus, poxvirus, nimavirus and baculoviruse. The proteomics of baculovirus occlusion-derived virions (ODV) were emphasized. Different mass spectrometry techniques used on ,carious baculoviruses were introduced, and the identified structurally associated proteins of baculoviruses are summarized.  相似文献   

16.
转Bt基因水稻对土壤微生态系统的潜在影响   总被引:14,自引:2,他引:12  
王忠华 《应用生态学报》2005,16(12):2469-2472
随着转基因作物商品化应用的增多,对其进行生态风险性评价尤为重要.国内外对转基因作物中外源基因向野生亲缘物种漂移的可能性、昆虫对抗虫转基因作物的耐受性以及转基因作物对生物多样性的潜在影响等问题进行了广泛的研究.文中从Bt杀虫结晶蛋白在土壤中的残留特性、Bt杀虫晶体蛋白对土壤微生物可培养类群和土壤酶活性的影响等方面对转Bt基因抗虫水稻的潜在生态风险性进行了简要综述,以期为同类研究提供有益的信息.  相似文献   

17.
Genetically engineered baculoviruses, relative to their wild-type progenitors, have successfully improved the time-to-kill of these arthropod-specific biopesticides. Beneficial arthropods that prey on targeted pest insects are likely the first nontarget organisms to be adversely affected by the applications of such biopesticides. The goals of this project were to assess potential risks of the recombinant baculoviruses on Solenopsis invicta, Geocoris punctipes, and Hippodamia convergens, all of which are common predators of heliothines in Texas cotton. Four recombinant Autographa californica nuclear polyhedrosis viruses (AcNPV), one Helicoverpa zea nuclear polyhedrosis virus (HzNPV), and two corresponding wild-type NPVs were used in this risk assessment study. Risks associated with these baculoviruses were determined by possible shifts in predator life history traits (rate of food consumption, travel speed, fecundity, and survival) when fed prey infected with recombinant viruses compared to prey infected with wild-type viruses or to healthy prey. We also tested for possible transmission of these viruses by predators using the polymerase chain reaction (PCR). No significant shifts in life history characteristics were detected in predators fed Heliothis virescens larvae infected with any of the seven viruses. Viral DNA was discovered using PCR in 2.3% of fire ant workers, but not from any of the queens or eggs. In G. punctipes, 13.4% of adults and 0.5% of eggs scored positive for viruses. Twelve percent of H. convergens adults were found PCR positive. Residency in all three predators tested provides a pathway which could increase the persistence of recombinant viral particles in the environment and thus may produce an indeterminable amount of risk associated with their inadvertent movement.  相似文献   

18.
The viral, bacterial, fungal and nematode pathogens of arthropod pests of apple and pear in northern and central Europe and their use as biocontrol agents are reviewed. Baculoviruses are important viral pathogens of several lepidopterous pests of apple and pear but other viral pathogens have not been investigated in depth and are little known. The granuloviruses of codling moth, Cydia pomonella (CpGV), and to a lesser extent, of the summer fruit tortrix moth, Adoxophyes orana (AoGV), have been researched extensively and are exploited as biological control agents. Commercial development and use has been limited because of their high costs, slow action, short persistence and specificity relative to broad-spectrum pesticides. The widespread development of strains of codling moth multi-resistant to insecticides and the desire to reduce dependence on pesticides have improved the commercial prospects of CpGV and use is likely to increase. The development of a genetically improved egt-strain of CpGV (lacking the ecdysteroid-UDP glucosyl transferase gene) in the UK is a significant breakthrough, though commercialization in the UK may be difficult due to adverse public attitudes to the release of genetically-modified microorganisms. Future research and development approaches include further genetic manipulation of CpGV and AoGV to improve potency, speed of kill and/or persistence, improvement of formulation (to reduce UV light sensitivity) and development of cheaper mass production techniques and possibly in vitro production. A systematic search for baculoviruses and other viruses of apple and pear pests is likely to reveal important new opportunities. The most important bacterial pathogen used as a biological control agent is Bacillus thuringiensis (Bt). However, Bt products currently available have limited effectiveness against many orchard pests due to the pests' cryptic life habits. The HD-1 Bt strain has been investigated and used extensively for control of leaf-rolling tortricid larvae and is widely used, but efficacy is moderate. Advances in biotechnology and genetic engineering provide opportunity for development of Bt strains designed specifically to control orchard pests, but this has not yet been done for commercial reasons. Other research approaches include the evaluation of new Bt products developed for other markets worldwide and the bioassay of strains from Bt collections against specific apple or pear pests. Entomopathogenic fungi provide good opportunity for development as biological control agents of apple and pear pests. The main factor limiting their effectiveness is the requirement for high humidities and moderate temperatures for spore germination and development. For foliar pests, a useful starting point for research might be the control of sucking pests which excrete honeydew (e.g. Cacopsylla sp. or aphids) or those that inhabit protected microenvironments (e.g. Dasineura sp.). Key areas for research are improved formulation, the selection of low temperature-active strains, field evaluation and avoiding possible adverse effects of fungicides. An alternative approach is to examine the exploitation of entomopathogenic fungi in soil, to which many species of entomopathogenic fungi are adapted ecologically. Apple and pear orchards provide long-term stable habitats where populations of entomopathogenic fungi in soil are likely to be large. There are few important soil pests of apple or pear. However, many species spend part of their life in soil, mainly to pupate or overwinter, where they may be targeted by fungal entomopathogenic biocontrol agents. Entomopathogenic nematodes have many attributes which favour them as biological control agents. However, their requirement for surface moisture for survival and movement means there are only limited prospects for using them as biological control agents for foliar pests. As with entomopathogenic fungi, there are better prospects for control of pests that occur in soil. Microbial pathogens and entomopathogenic nematodes are important components of the natural enemy complex of apple and pear orchards and more effort needs to be devoted to fostering them and exploiting them as biocontrol agents in sustainable, biologically-based Integrated Pest Management programmes. They can in many cases be mass produced at low cost by bulk fermentation processes and applied as sprays (as 'biopesticides') and are, at least potentially, ideal biological control agents for many apple or pear pests. Important general characteristics are their comparative environmental and human safety, compatibility with other control strategies in Integrated Pest Management programmes and reproductive capacity. They tend to be effective in a narrower range of environmental conditions than pesticides, but there is considerable potential to improve their effectiveness by improved formulation, strain selection and genetic manipulation. They are often host-specific and thus, offer restricted marketing opportunities, which is a significant barrier to development and commercialisation. Registration procedures and associated fees for microbial agents are a further significant barrier. Such requirements do not apply currently to nematodes.  相似文献   

19.
20.
This review examines interactions between DNA and soil with an emphasis on the persistence and stability of DNA in soil. The role of DNA in genetic transformation in soil microorganisms will also be discussed. In addition, a postulated mechanism for stabilization and elongation/asserbly of primitive genetic material and the role of soil particles, salt concentrations, temperature cycling and crystal formation is examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号