首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
汪桂芝  戴友芝  龚敏  杨双  万丽 《微生物学通报》2013,40(12):2196-2202
【目的】考察初始pH值为5.0?10.0时, 不同价态铁元素(Fe0、Fe2+和Fe3+)对厌氧微生物降解2,4,6-三氯酚(2,4,6-TCP)的影响。【方法】采用间歇试验, 接种驯化3个月的厌氧污泥, 向其中分别投加Fe0、Fe2+和Fe3+, 测定体系中2,4,6-TCP浓度、pH值、铁离子浓度和微生物脱氢酶活性。【结果】“Fe0/Fe2+/Fe3+-微生物”体系对2,4,6-TCP的降解效率, 在初始pH值为中性偏酸性时, “Fe2+-微生物”体系>“Fe0-微生物”体系>“Fe3+-微生物”体系; 而当初始pH值为碱性时, “Fe0-微生物”体系>“Fe2+-微生物”体系>“Fe3+-微生物”体系; “Fe0/Fe2+/Fe3+-微生物”三种体系均有调节pH值的能力, 其中“Fe0-微生物”体系调节能力最强; 在不同初始pH值条件下不同价态铁元素对厌氧微生物活性的影响结果与其对2,4,6-TCP的影响规律基本相同。【结论】不同价态铁元素对厌氧微生物降解2,4,6-TCP的影响与初始pH值、体系实时pH值和铁元素价态及浓度等因素有关。  相似文献   

2.
有机污染物2,4,6-三氯苯酚(2,4,6-TCP)普遍存在于地下水和河流底泥等厌氧环境中。为了探究厌氧微生物菌群XH-1对2,4,6-TCP的降解能力,本研究以2,4,6-TCP为底物,接种XH-1建立微宇宙培养体系,并以中间产物4-氯苯酚(4-CP)和苯酚为底物分别进行分段富集培养,利用高效液相色谱分析底物的降解转化,同时基于16S rRNA基因高通量测序分析微生物群落结构变化。结果表明: 2,4,6-TCP(122 μmol·L-1)以0.15 μmol·d-1的速率在80 d内被完全降解转化,降解中间产物分别为2,4-二氯苯酚(2,4-DCP)、4-氯苯酚和苯酚,所有中间产物最终在325 d被完全降解。高通量测序结果表明,脱卤杆菌和脱卤球菌可能驱动2,4,6-TCP还原脱氯,其中,脱卤球菌可能在4-CP的脱氯转化中发挥重要作用,并与丁酸互营菌和产甲烷菌联合作用彻底降解2,4,6-TCP。  相似文献   

3.
采用间歇试验, 接种驯化两月的厌氧混合微生物, 考察厌氧体系中添加零价铁(Fe0)对2,4-二氯酚(2,4-DCP)生物还原脱氯效果的影响, 并对影响“Fe0+微生物”体系的一些因素进行了探索。结果显示:与零价铁或微生物的单独作用相比, “Fe0+微生物”体系能够有效促进2,4-DCP的脱氯反应, 最佳Fe0投加量和微生物接种量分别为0.5 g/L和376.2 mgVSS/L; 初始pH = 8.0对2,4-DCP的转化效果最好, 偏酸性环境不利于污染物转化; 微生物接种量与铁用量之间有一适宜比例, 一定范围内增加微生物接种量可催生出更多可降解污染物的酶或酶系, 提高2,4-DCP的降解效果。  相似文献   

4.
Fe0/厌氧微生物联合体系降解硝基苯的研究   总被引:1,自引:0,他引:1  
利用Fe0/厌氧微生物联合体系降解硝基苯(NB), 结果显示, Fe0与厌氧微生物之间存在明显的协同效应, 硝基苯的降解效果随零价铁投加量的增加而提高;最佳pH值为5.0~6.0;添加少量共代谢初级基质(葡萄糖), 可以大幅度提高硝基苯的降解;较高浓度铁离子对硝基苯的降解表现出一定的抑制作用, 添加0.5 mg/L的Fe3+或Fe2+可以加快硝基苯的降解。硝基苯降解的主要产物为苯胺, 降解过程遵循一级动力学模型, 一级反应速率常数k值随硝基苯浓度的提高而降低。  相似文献   

5.
1,2,3-三氯丙烷(1,2,3-trichloropropane,1,2,3-TCP)是一种人工合成的脂肪族氯代烃,在工、农业生产中得到广泛应用。1,2,3-TCP作为环氧氯丙烷工业生产的中间产物,可作为前体物质用于生产土壤熏蒸剂、有机溶剂等。因其环境持久性、迁移性和生态毒性,国内外机构逐渐开始关注该有机氯污染物的环境归趋、生态健康风险和环境管控。当前,1,2,3-TCP污染物的降解与场地修复仍然是研究热点,但是对于1,2,3-TCP降解转化机制尚缺乏深入研究与总结。鉴于此,文中在讨论1,2,3-TCP的来源、环境污染、生态效应及物理化学降解方法与技术等的基础上,进一步综述了1,2,3-TCP的微生物降解与修复机制(如好氧共代谢降解、厌氧降解等);重点讨论了地下水等厌氧环境中1,2,3-TCP的厌氧微生物降解转化途径与机制,并从热力学角度论证了厌氧条件下1,2,3-TCP作为电子受体被有机卤呼吸微生物利用并降解的可行性;最后,对1,2,3-TCP污染场地原位生物修复进行了总结并对未来研究发展方向进行了展望。  相似文献   

6.
【目的】探究不同菌浓度和亚铁浓度条件下,Acidovorax sp. strain BoFeN1介导的厌氧亚铁氧化耦合硝酸盐还原过程的动力学和次生矿物。【方法】构建包含菌BoFeN1、硝酸盐、亚铁的厌氧培养体系,测试硝酸根、亚硝酸根、乙酸根、亚铁等浓度,并收集次生矿物,采用XRD、SEM进行矿物种类和形貌表征。【结果】在微生物介导硝酸盐还原耦合亚铁氧化的体系中,高菌浓度促进硝酸盐还原,对亚铁氧化也有一定促进作用;高浓度亚铁在低菌浓度下氧化反应速率和程度降低,但是在高菌浓度下无明显影响;亚铁浓度越高次生矿物结晶度越高,但对硝酸盐还原具有一定抑制作用。在微生物介导亚硝酸盐还原耦合亚铁氧化的体系中,高的菌浓度和亚铁浓度都会促进亚硝酸盐还原,但亚铁氧化的次生矿物会对亚硝酸盐的微生物还原产生较强的抑制作用,次生矿物的种类和结晶度主要受亚铁浓度影响。【结论】硝酸盐还原主要是生物反硝化作用,亚硝酸盐还原包含生物反硝化和化学反硝化两部分,在硝酸盐体系中亚铁氧化与次生矿物生成是受生物和化学反硝化作用的共同影响,但亚硝酸盐体系中亚铁氧化与次生矿物生成主要是受化学反硝化作用影响。该研究可为深入理解厌氧微生物介导铁氮耦合反应机制提供基础数据和理论支撑。  相似文献   

7.
【目的】探究中性厌氧条件下,金属锌影响下硝酸盐依赖型铁氧化菌Pseudomonas stutzeri LS-2驱动的硝酸盐还原耦合亚铁氧化成矿过程机制,对深入理解中性厌氧环境中微生物亚铁氧化驱动的反硝化作用及重金属固定机制具有重要意义。【方法】以不同Zn(Ⅱ)浓度构建LS-2驱动的亚铁氧化成矿体系,分析不同体系中亚铁氧化速率、硝酸盐还原速率以及形成矿物的结构变化规律。【结果】LS-2驱动的硝酸盐还原耦合亚铁氧化成矿过程中,共存Zn(Ⅱ)降低该过程中硝酸盐的还原速率和亚铁氧化速率。同时,随着Zn(Ⅱ)浓度提高,抑制作用增强。微生物亚铁氧化形成的矿物通过吸附、共沉淀和离子置换等过程固定Zn(Ⅱ),降低Zn(Ⅱ)活性。Zn(Ⅱ)浓度对形成的矿物结构有较大的影响:低浓度Zn(Ⅱ)体系中,形成的矿物为纤铁矿;随着Zn(Ⅱ)浓度的提高,矿物结构与结晶度都有一定程度的变化,当Zn(Ⅱ)达到4 mmol/L时,形成的矿物主要为铁锌尖晶石。【结论】明确了重金属锌对LS-2菌株反硝化及亚铁氧化过程的抑制规律,同时阐明了Zn(Ⅱ)浓度对形成矿物结构的影响。研究结果有助于深入认识中性厌氧环境中重金属与微生物驱动的铁循环和反硝化过程的耦合作用,为土壤重金属污染防治提供理论支撑。  相似文献   

8.
2,4,6-三氯苯酚诱导鲫鱼肝脏自由基的产生及其氧化应激   总被引:4,自引:0,他引:4  
采用电子顺磁共振的方法,研究了鲫鱼腹腔注射2,4,6-三氯苯酚(2,4,6-TCP)不同时间(4、8、12、24、72 h)后其肝脏自由基强度的变化、氧化应激反应及其损伤机理.结果表明:2,4,6-TCP极显著促进了鲫鱼肝脏自由基的产生;鲫鱼肝脏内超氧化物歧化酶 (SOD) 与谷胱甘肽硫转移酶 (GST) 的活性受到显著诱导 ,过氧化氢酶 (CAT) 活性受到抑制,还原型谷胱甘肽 (GSH) 含量与对照组无明显差异,氧化型谷胱甘肽 (GSSG) 含量显著升高 ,丙二醛(MDA) 含量极显著增加.  相似文献   

9.
零价铁对2,4-二氯酚生物还原脱氯的影响研究   总被引:4,自引:0,他引:4  
采用间歇试验,接种驯化两月的厌氧混合微生物,考察厌氧体系中添加零价铁(Fe^0)对2,4-二氯酚(2,4-DCP)生物还原脱氯效果的影响,并对影响“Fe^O+微生物”体系的一些因素进行了探索。结果显示:与零价铁或微生物的单独作用相比,“Fe^O+微生物”体系能够有效促进2,4-DCP的脱氯反应,最佳Fe^O投加量和微生物接种量分别为0.5g/L和376.2mgVSS/L;初始pH=8.0对2,4-DCP的转化效果最好,偏酸性环境不利于污染物转化;微生物接种量与铁用量之间有一适宜比例,一定范围内增加微生物接种量可催生出更多可降解污染物的酶或酶系,提高2,4-DCP的降解效果。  相似文献   

10.
【目的】利用硫酸盐还原菌(SRB)厌氧活性污泥进行烟气脱硫,探索硫酸盐生物还原的最适条件及重金属离子对硫酸盐生物还原的影响,以提高硫酸盐还原阶段的效率。【方法】对取自污水处理厂的SRB厌氧活性污泥进行高浓度硫酸盐胁迫驯化。分析生物脱硫过程中SRB厌氧污泥还原硫酸盐的限制性因素及影响。【结果】在最适生长条件下(pH 6.5,32°C),经驯化获得的SRB厌氧活性污泥有较强的硫酸盐还原能力。Fe2+的适量添加对硫酸盐还原有一定促进作用。SRB厌氧污泥还原硫酸盐的ThCOD/SO42-最适值为3.00,ThCOD=3.33为最适理论化学需氧量,硫酸盐还原率可达72.15%。SRB厌氧污泥还原硫酸盐反应体系中抑制SRB活性的硫化物浓度为300 mg/L。Pb2+和Ni2+在较低的浓度下(1.0 mg/L和2.0 mg/L)对硫酸盐的还原产生较强的抑制作用,而Cu2+在稍高的浓度下(8.0 mg/L)显示出明显的抑制作用。【结论】经驯化,SRB厌氧活性污泥显示出较强的硫酸盐还原能力,具有应用于工业烟气生物脱硫的潜力。去除重金属离子Pb2+、Ni2+和Cu2+可有效解除对硫酸盐生物还原作用的抑制。  相似文献   

11.
Raj Boopathy 《Biologia》2014,69(10):1264-1270
Anaerobic degradation of 2,4,6-trinitrotoluene (TNT) was studied under sulfate- and nitrate-reducing conditions using enrichment cultures developed from a TNT-contaminated soil from the Louisiana Army Ammunition Plant (LAAP) in Minden, Louisiana, USA. The soil samples were enriched using mineral salt media with either nitrate or sulfate as electron acceptors in the presence of TNT under strict anaerobic conditions. The enriched samples were experimented with TNT as either the sole source of carbon or nitrogen and also under co-metabolic conditions with molasses as co-substrate. The results revealed that TNT was removed under both electron acceptor conditions. However, the TNT degradation efficiency was significantly higher under sulfate-reducing conditions than the nitrate-reducing conditions. Under sulfate-reducing conditions, TNT removal was faster when molasses was used as co-substrate. The metabolic analysis showed that TNT was mineralized and the major end product was acetic acid, CO2, and ammonia. A soil slurry reactor with TNT-contaminated soil showed more than 90% of TNT removal within 60 days of incubation.  相似文献   

12.
The ability of Alcaligenes eutrophus JMP134(pJP4) to degrade 2,4-dichlorophenoxyacetic acid, 2,4,6-trichlorophenol, and other chlorophenols in a bleached kraft mill effluent was studied. The efficiency of degradation and the survival of strain JMP134 and indigenous microorganisms in short-term batch or long-term semicontinuous incubations performed in microcosms were assessed. After 6 days of incubation, 2,4-dichlorophenoxyacetate (400 ppm) or 2,4,6-trichlorophenol (40 to 100 ppm) were extensively degraded (70 to 100%). In short-term batch incubations, indigenous microorganisms were unable to degrade such of compounds. Degradation of 2,4,6-trichlorophenol by strain JMP134 was significantly lower at 200 to 400 ppm of compound. This strain was also able to degrade 2,4-dichlorophenoxyacetate, 2,4,6-trichlorophenol, 4-chlorophenol, and 2,4,5-trichlorophenol when bleached Kraft mill effluent was amended with mixtures of these compounds. On the other hand, the chlorophenol concentration and the indigenous microorganisms inhibited the growth and survival of the strain in short-term incubations. In long-term (>1-month) incubations, strain JMP134 was unable to maintain a large, stable population, although extensive 2,4,6-trichlorophenol degradation was still observed. The latter is probably due to acclimation of the indigenous microorganisms to degrade 2,4,6-trichlorophenol. Acclimation was observed only in long-term, semicontinuous microcosms.  相似文献   

13.
The objective of this study was to achieve a better quantitative understanding of the kinetics of 2,4,6-trichlorophenol (TCP) biodegradation by an acclimated mixed microbial culture. An aerobic mixed microbial culture, obtained from the aeration basin of the wastewater treatment plant, was acclimated in shake flasks utilizing various combinations of 2,4,6-TCP (25–100 mg l−1), phenol (300 mg l−1) and glycerol (2.5 mg l−1) as substrates. Complete primary TCP degradation and a corresponding stoichiometric release of chloride ion were observed by HPLC and IEC analytical techniques, respectively. The acclimated cultures were then used as an inoculum for bench scale experiments in a 4 l stirred-tank reactor (STR) with 2,4,6-TCP as the sole carbon/energy (C/E) source. The phenol acclimated mixed microbial culture consisted of primarily Gram positive and negative rods and was capable of degrading 2,4,6-TCP completely. None of the predicted intermediate compounds were detected by gas chromatography in the cell cytoplasm or supernatant. Based on the disappearance of 2,4,6-TCP, degradation was well modelled by zero-order kinetics which was also consistent with the observed oxygen consumption. Biodegradation rates were compared for four operating conditions including two different initial 2,4,6-TCP concentrations and two different initial biomass concentrations. While the specific rate constant was not dependent on the initial 2,4,6-TCP concentration, it did depend on the initial biomass concentration (X init). A lower biomass concentration gave a much higher zero-order specific degradation rate. This behaviour was attributed to a lower average biomass age or cell retention time (θx) for these cultures. The implications of this investigation are important for determining and predicting the potential risks associated with TCP, its degradation in the natural environment or the engineering implications for ex situ treatment of contaminated ground water or soil.  相似文献   

14.
Utilization of d-carnitine by Pseudomonas sp. AK 1   总被引:2,自引:0,他引:2  
Abstract The degradation of chlorophenols by Alcaligenes eutrophus JMP134 (pJP4) was studied. The strain grew on 2,4,6-trichlorophenol or 2,4,6-tribromophenol as the sole carbon and energy source. Complete degradation of 2,4,6-trichlorophenol was confirmed by chloride release and gas chromatography analysis of supernatants from growth cultures. The 2,3,5-, 2,3,4-, 2,3,6-and 2,4,5-isomers of trichlorophenol did not support growth. However, up to 40% of 2,4,5-trichlorophenol was mineralized during growth of A. eutrophus on chemostats fed with either phenol (0.4 mM) or 2,4,6-trichlorophenol (0.4 mM) plus 2,4,5-trichlorophenol (0.1 mM). Growth on 2,4,6-trihalophenols was also observed in A. Eutrophus JMP222, the strain lacking pJP4, suggesting that this new degradative ability reported for A. eutrophus is not related to pJP4 encoded catabolic functions.  相似文献   

15.
Benzene-amended microcosms prepared with saturated soil or sediment from five hydrocarbon-contaminated sites and one pristine site were monitored for a year and a half to determine the rate of benzene biodegradation under a variety of electron-accepting conditions. Sustainable benzene degradation was observed under specific conditions in microcosms from four of the six sites. Significant differences were observed between sites with respect to lag times before the onset of degradation, rates of degradation, sustainability of the activity, and environmental conditions supporting degradation. Benzene degradation was observed under sulfate-reducing, nitrate-reducing, and iron(III)-reducing conditions, but not under methanogenic conditions. The presence of competing substrates such as toluene, xylenes, and ethylbenzene was found to inhibit anaerobic benzene degradation in microcosms where sulfate or possibly nitrate was the electron acceptor for benzene degradation, but not in microcosms from where iron(III) was the electron acceptor. The presence of organic matter, indicated by a high fraction organic carbon (foc), also appeared to inhibit the biodegradation of benzene; microcosms constructed with soils with the highest foc exhibited the longest lag times before the onset of benzene degradation. The initial extent of hydrocarbon contamination did not appear to correlate with anaerobic benzene-degrading activity.  相似文献   

16.
Laccase, a so-called “blue-copper” oxidase, is able to oxidize a variety of organic compounds. Sol–gel derived silica glasses are frequently adopted as an immobilization method to improve the stability of enzymes and make them reusable. In this study, immobilization conditions were optimized to achieve improved embedding results. The thermal stability, reaction stability and storage stability were improved with the immobilized enzyme when compared to the free enzyme. 2,4-Dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) were chosen as model compounds. The treatment of chlorophenols (CPs) by immobilized laccase demonstrated excellent removal and response stability. The affinity of TCP for immobilized laccase was higher than that of DCP. This finding leads to different removal efficiencies under variable conditions (reaction time, initial concentration, dosage of immobilized laccase and removal rate in mixed solution). By fitting the experimental data with the diffusion model of the degradation process, the degradation of CPs by immobilized laccase matches an intraparticle diffusion-controlled model.  相似文献   

17.
We investigated the degradation of 2,4,6-trichlorophenol (2,4,6-TCP) by cells of Streptomyces rochei 303 immobilized on various carriers. Polycaproamide fibre was chosen as the optimal carrier for immobilization. The cells immobilized on this carrier degraded high-concentrations of individual chlorophenols and their mixtures: from mono- to pentachlorophenol including the most persistent meta-substituted derivatives. During continuous fermentation in a column with continuous substrate and air flow at a maximal degraded concentration of 2,4,6-TCP of 1 g/l and the specific flow rate of 0.08 h–1, the efficiency of degradation was 720 mg 2,4,6-TCP/day (36 mg 2,4,6-TCP/day per gram of carrier). The above system of immobilized cells was operated continuously without any loss of activity for 2.5 months, the amount of degraded 2,4,6-TCP being 54 g. At a lower concentration of the reagent (150 mg/l) the system was operated without any decrease in its degradability and without any additional carbon source for 11 months. Correspondence to: L. A. Golovleva  相似文献   

18.
A Gram-negative nitrate-reducing bacterium, strain Asl-3, was isolated from activated sludge with nitrate and 3-hydroxybenzoate as sole source of carbon and energy. The new isolate was facultatively anaerobic, catalase- and oxidase-positive and polarly monotrichously flagellated. In addition to nitrate, nitrite, N2O, and O2 served as electron acceptors. Growth with 3-hydroxybenzoate and nitrate was biphasic: nitrate was completely reduced to nitrite before nitrite reduction to N2 started. Benzoate, 3-hydroxybenzoate, 4-hydroxybenzoate, protocatechuate or phenyl-acetate served as electron and carbon source under aerobic and anaerobic conditions. During growth with excess carbon source, poly-beta-hydroxybutyrate was formed. These characteristics allow the affiliation of strain Asl-3 with the family Pseudomonadaceae. Analogous to the pathway of 4-hydroxybenzoate degradation in other bacteria, the initial step in anaerobic 3-hydroxybenzoate degradation by this organism was activation to 3-hydroxy-benzoyl-CoA in an ATP-consuming reaction. Cell extracts of 3-hydroxybenzoate-grown cells exhibited 3-hydroxybenzoyl-CoA synthetase activity of 190 nmol min-1 mg protein-1 as well as benzoyl-CoA synthetase activity of 86 nmol min-1 mg protein-1. A reductive dehydroxylation of 3-hydroxybenzoyl-CoA could not be demonstrated due to rapid hydrolysis of chemically synthesized 3-hydroxybenzoyl-CoA by cell extracts.  相似文献   

19.
Stable carbon isotope fractionation during dichloromethane (DCM) degradation by methylotrophic bacteria was investigated under aerobic and nitrate-reducing conditions. The strains studied comprise several Hyphomicrobium strains, Methylobacterium, Methylopila, Methylophilus and Methylorhabdus spp. that are considered to degrade DCM by a glutathione (GSH)-dependent dehalogenase enzyme system in the initial step. The stable carbon isotope fractionation factors (alphaC) of the strains varied under aerobic conditions between 1.043 and 1.071 and under nitrate-reducing conditions between 1.048 and 1.065. Comparison of isotope fractionation under aerobic and nitrate-reducing conditions by individual strains revealed only minor to no differences. The variability in isotope fractionation among strains was found to be related to the polymorphism of the functional genes encoding the DCM dehalogenase.  相似文献   

20.
Pseudomonas testosteroni CPW301 degraded phenol and 4-chlorophenol simultaneously, but degradation rates of these compounds were affected by 4-chlorophenol. Phenol increased the cell concentration and therefore the degradation efficiency of 4-chlorophenol was improved. Pseudomonas solanacearum TCP114 could degrade only 2,4,6-trichlorophenol. A defined mixed culture of P. testosteroni CPW301 and P. solanacearum TCP114 could treat phenol, 4-chlorophenol, and 2,4,6-trichlorophenol completely and overcome the inhibition of substrates to other microorganisms. The degradation capacity of the packed bed reactor (PBR) was higher than that of the continuous stirred tank reactor, but the PBR was unsuitable for oxygen-sensitive microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号