首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the accumulation of evidence, the risk of herbivory depends not only on the traits of a plant but also on those of neighboring plants. Despite the potential importance of frequency-dependent interactions in the evolutionary stability of anti-herbivore defense, we know little about such associational effects between defended and undefended plants within a species. In this study, we determined whether the intraspecific associational effects against the oligophagous leaf beetle, Phaedon brassicae, caused a minority advantage in defense and growth between trichome-producing (hairy) and trichomeless (glabrous) plants of Arabidopsis halleri subsp. gemmifera. We experimentally demonstrated that the magnitude of herbivory and the number of adult beetles on hairy plants decreased when hairy plants were a minority, whereas the leaf damage and the beetle abundance did not differ between hairy and glabrous plants when glabrous plants were a minority. By contrast, the larvae of P. brassicae occurred less when hairy plants were a majority. We also found a reciprocal minority advantage in the biomass production for both hairy and glabrous plants. Additionally, the adults tended to attack glabrous leaves more rapidly than hairy ones, particularly when the beetles were starved or experienced glabrous diets. Furthermore, in the absence of herbivory, the growth of hairy plants tended to be slower than glabrous plants, which indicated a cost for the production of trichomes. Our study suggests that associational effects are a mechanism for the maintenance of trichome dimorphism by contributing to negative frequency-dependent growth.  相似文献   

2.
Geographic variation is commonly observed in plant resistance traits, where plant species might experience different selection pressure across a heterogeneous landscape. Arabidopsis halleri subsp. gemmifera is dimorphic for trichome production, generating two morphs, trichome‐producing (hairy) and trichomeless (glabrous) plants. Trichomes of A. halleri are known to confer resistance against the white butterfly, cabbage sawfly, and brassica leaf beetle, but not against flea beetles. We combined leaf damage, microclimate, and microsatellite loci data of 26 A. halleri populations in central Japan, to explore factors responsible for fine‐scale geographic variation in the morph frequency. We found that hairy plants were less damaged than glabrous plants within populations, but the among‐site variation was the most significant source of variation in the individual‐level damage. Fixation index () of a putative trichome locus exhibited a significant divergence along population‐level damage with an exception of an outlier population, inferring the local adaptation to herbivory. Notably, this outlier was a population wherein our previous study reported a balancing role of the brassica leaf beetle Phaedon brassicae on the morph frequency. This differentiation of the trichome locus was unrelated to neutral genetic differentiation (evaluated by of microsatellite loci) and meteorological factors (including temperature and solar radiation). The present findings, combined with those of our previous work, provide suggestive evidence that herbivore‐driven divergence and occasional outbreak of a specific herbivore have jointly contributed to the ecogeographic pattern in the frequency of two morphs.  相似文献   

3.
Frequency-dependent prey choice by natural enemies may influence the coexistence of multiple prey types, but little is known about whether frequency-dependent foraging choice occurs in herbivory on plants showing resistance polymorphism within a single population. Here we examined frequency-dependent foraging by a crucifer-feeding leaf beetle, Phaedon brassicae, on trichome-producing (hairy) and trichomeless (glabrous) plants coexisting within a natural population of the perennial herb Arabidopsis halleri subsp. gemmifera. Larvae of P. brassicae fed on hairy leaves showed slower growth than those fed on glabrous leaves. Although adult beetles consumed similar amounts of leaves when they were fed either hairy or glabrous leaves in no-choice conditions, our choice experiment showed that adult beetles fed at less than the proportionally expected level on hairy leaves compared to glabrous leaves when the hairy leaves were less or equally abundant. Both types of leaves were consumed at the proportionally expected levels when the hairy leaves were more abundant than the glabrous leaves. In a natural population, the leaf damage on the hairy plants was negatively correlated with the local proportion of the glabrous plants in a 1-m diameter patch across 2 years, while correlations between the leaf damage on the glabrous plants and their proportion differed between the 2 years. Additionally, we found five glucosinolates in leaves of A. halleri, but their accumulation did not differ between hairy and glabrous plants. Our experimental results indicate that hairy plants incur less herbivory by P. brassicae when glabrous plants are abundant. The field pattern provides evidence suggestive of frequency-dependent herbivory acting on hairy plants. The present study highlights one of the putative mechanisms of maintaining plant resistance polymorphism.  相似文献   

4.
Plants in nature are attacked sequentially by herbivores, and theory predicts that herbivore-specific responses allow plants to tailor their defenses. We present a novel field test of this hypothesis, and find that specific responses of Solanum dulcamara lead to season-long consequences for two naturally colonizing herbivores, irrespective of the second herbivore to attack plants. This result indicates that responses induced by the initial herbivore made plants less responsive to subsequent attack. We show that initial herbivory by flea beetles and tortoise beetles induce distinct plant chemical responses. Initial herbivory by flea beetles lowered the occurrence of conspecifics and tortoise beetles relative to controls. Conversely, initial herbivory by tortoise beetles did not influence future herbivory. Remarkably, the experimentally imposed second herbivore to feed on plants did not modify consequences (induced resistance or lack thereof) of the first attacker. Induction of plant chemical responses was consistent with these ecological effects; i.e. the second herbivore did not modify the plant's initial induced response. Thus, canalization of the plant resistance phenotype may constrain defensive responses in a rapidly changing environment.  相似文献   

5.
1. Within the host range of herbivorous insects, performance hierarchies are often correlated with relatedness to a primary host plant, as plant traits are phylogenetically conserved. Therefore, it was hypothesised that differences in herbivore performance on closely related plant species are due to resistance traits that vary in magnitude, rather than in the nature of the traits. 2. This hypothesis was tested by manipulating putative resistance traits of three congeneric thistle species (Cirsium arvense, Cirsium palustre, and Cirsium vulgare) and assessing the performance of the oligophagous, leaf‐feeding beetle, Cassida rubiginosa. Measurements were done of survival, weight gain, and development time of the beetle on its primary host, C. arvense, and two alternative hosts under low and high nutrient availability, and on shaved and unshaved leaves. 3. Survival of C. rubiginosa was strongly dependent on plant species with final mean survival rates of 47%, 16%, and 8% on C. arvense, C. palustre, and C. vulgare, respectively. Survival was primarily explained by leaf trichome densities, and to a lesser extent by specific leaf area. Leaf flavonoid concentrations did not explain differences in beetle survival, and there were no differences in beetle weight gain or development time of individuals that survived to adulthood. 4. No beetles survived on unshaved (hairy) C. vulgare plants, but manipulating leaf trichome densities of the thistle species by shaving the leaves moderated the plant‐specific resistance, and equalised the survival rates. Survival of C. rubiginosa on alternative congeneric hosts was explained by a common physical resistance trait that varied in magnitude.  相似文献   

6.
Jasmonate-mediated induced plant resistance affects a community of herbivores   总被引:17,自引:0,他引:17  
1. The negative effect of induced plant resistance on the preference and performance of herbivores is a well‐documented ecological phenomenon that is thought to be important for both plants and herbivores. This study links the well‐developed mechanistic understanding of the biochemistry of induced plant resistance in the tomato system with an examination of how these mechanisms affect the community of herbivores in the field. 2. Several proteins that are induced in tomato foliage following herbivore damage have been linked causally to reductions in herbivore performance under laboratory conditions. Application of jasmonic acid, a natural elicitor of these defensive proteins, to tomato foliage stimulates induced responses to herbivory. 3. Jasmonic acid was sprayed on plants in three doses to generate plants with varying levels of induced responses, which were measured as increases in the activities of proteinase inhibitors and polyphenol oxidase. 4. Field experiments conducted over 3 years indicated that induction of these defensive proteins is associated with decreases in the abundance of all four naturally abundant herbivores, including insects in three feeding guilds, caterpillars, flea beetles, aphids, and thrips. Induced resistance killed early instars of noctuid caterpillars. Adult flea beetles strongly preferred control plants over induced plants, and this effect on host plant preference probably contributed to differences in the natural abundance of flea beetles. 5. The general nature of the effects observed in this study suggests that induced resistance will suppress many members of the herbivore community. By linking plant biochemistry, insect preference, performance, and abundance, tools can be developed to manipulate plant resistance sensibly and to predict its outcome under field conditions.  相似文献   

7.
Abstract.  1. Herbivory can induce resistance in a plant and the induced phenotype may be disfavoured by subsequent herbivores. Yet, as the distance between plants in a population increases, limited mobility may make a herbivore more likely to feed and oviposit on host plants in its immediate surroundings.
2. The present study tested whether a herbivore's preference and distribution across plants with different induced phenotypes was influenced by the spatial distribution of plants. A fragmented population of Solanum dulcamara plants was created. This consisted of discrete, spatially separated patches with different histories of damage, either herbivory from adult flea beetles ( Psylliodes affinis ), tortoise beetles ( Plagiometriona clavata ), or mechanical damage. Each patch was separated by 7 m and consisted of 12 plants that were spaced 30 cm apart. Then a fixed number of adult tortoise beetles were introduced to each patch, and movement and oviposition within and between spatially separate homogeneous patches (receiving one type of damage) were compared with movement and oviposition within heterogeneous patches (containing all three types of damage) over the growing season.
3. Flea beetle and tortoise beetle herbivory consistently induced different phytochemical responses in S. dulcamara (polyphenol oxidase and peroxidase), and adult tortoise beetles avoided oviposition on the flea beetle induced plants within heterogeneous patches. However, between homogeneous patches, plant phenotype did not influence oviposition. Colonisation by naturally occurring flea beetle adults followed a similar pattern.
4. These results suggest that the heterogeneity of plant phenotypes can influence herbivore choice and distribution at small but not large spatial scales.  相似文献   

8.
Many plant species have evolved defense traits against herbivores. Associational effects (AEs) refer to a kind of apparent interaction where the herbivory risk to a focal plant species depends on the composition of other plant species in a neighborhood. Despite ample evidence for AEs between different plant species, this point of view has rarely been applied to polymorphism in defense traits within a plant species. The purpose of this review is to highlight an overlooked role of conspecific AEs in maintaining polymorphism in antiherbivore defense. First, I present a general review of AE between plant species and its role in the coexistence of plant species. This viewpoint of AE can be applied to genetic polymorphism within a plant species, as it causes frequency‐ and density‐dependent herbivory between multiple plant types. Second, I introduce a case study of conspecific AEs in the trichome‐producing (hairy) and glabrous plants of Arabidopsis halleri subsp. gemmifera. Laboratory and semi‐field experiments illustrated that AEs against the brassica leaf beetle Phaedon brassicae mediate a minority advantage in defense and fitness between hairy and glabrous plants. Combined with a statistical modeling approach, field observation revealed that conspecific AEs can maintain the trichome dimorphism via negative frequency‐dependent selection in a plant population. Finally, I discuss spatial and temporal scales at which AEs contribute to shaping genetic variation in antiherbivore defense in a plant metapopulation. Based on the review and evidence, I suggest that AEs play a key role in the maintenance of genetic variation within a plant species.  相似文献   

9.
Plants have evolved a number of defences to ameliorate herbivore attacks including chemicals induced by mechanical wounding. Such changes in plant chemical composition are potential confounding factors in experiments on plant – insect interactions, which often present cuttings of potential host plants to phytophagous insects. In particular, this could affect studies of female egg‐laying preference and larval performance, because the same plant chemicals that deter certain generalist insects can elevate attacks from more specialized insects. Furthermore, plant cuttings are by definition smaller than intact plants, and any female host size preference could thus affect experiments using plant cuttings. We first assessed female preference and larval performance of a specialist herbivore, Pieris napi (L.) (Lepidoptera: Pieridae, Pierini), confronted with either intact plants or leaf‐cuttings of four Brassicaceae host plants, Alliaria petiolata (Bieb.) Cavara & Grande, Barbarea vulgaris (L.) WT Aiton, Berteroa incana (L.) DC., and Brassica napus (L.). Egg and larval survival did not differ between intact plants and leaf‐cuttings, whereas larval growth was slightly, but significantly, faster on leaf‐cuttings. Females, however, significantly preferred to lay eggs on intact plants of all four hosts, although the preference hierarchy for the intact plants was largely mirrored by that for leaf‐cuttings. We then tested the female preference for different size‐classes of intact B. napus plants. Small individuals received more eggs than larger individuals, and follow‐up experiments showed that this difference was largely generated by a strong female preference for cotyledon leaves; there was no significant difference in female preference for large and small individuals when both carried cotyledons, and females landing on cotyledons were more likely to oviposit compared to when landing on a true leaf. Our study concludes that plant cuttings can serve as adequate proxies for live plants for preference/performance studies, but that experimentalists should be aware of the variation imposed both by plant handling and plant phenology for female oviposition preference.  相似文献   

10.
It has been assumed that herbivores constitute a selective agent for the evolution of plant resistance. However, few studies have tested this hypothesis. In this study, we look at the annual weed Datura stramonium for evidence of current natural selection for resistance to herbivorous insects. Paternal half-sib families obtained through controlled crosses were exposed to herbivores under natural conditions. The plants were damaged by two folivorous insects: the tobacco flea beetle Epitrix parvula and the grasshopper Sphenarium purpurascens. Selection was estimated using a multiple-regression analysis of plant size and of damage by the two herbivores on plant fitness measured as fruit production for both individual phenotypes and family breeding values (genetic analysis). Directional phenotypic selection was detected for both larger plant size and lower resistance to the flea beetles, whereas stabilizing phenotypic selection was revealed for resistance to S. purpurascens. However, performing the same analyses on the breeding values of the characters revealed directional and stabilizing selection only for plant size. Thus, no agreement existed between the results of the two types of analyses, nor was there any detectable potential for genetic change in the studied population because of selection on herbivore resistance. The narrow-sense heritability of every trait studied was small (all <0.1) and not different from zero. The potential for evolutionary response to natural selection for higher resistance to herbivores in the studied population of D. stramonium is probably limited by lack of genetic variation. Natural selection acts on phenotypes, and the detection of phenotypic selection on resistance to herbivores confirms their ecological importance in determining plant fitness. However, evolutionary inferences based solely on phenotypic selection analyses must be interpreted with caution.  相似文献   

11.
The interactions between plant‐eating insects and their hosts have shaped both the insects and the plants, driving evolution of plant defenses and insect specialization. The leaf beetle Trirhabda eriodictyonis (Chrysomelidae) lives on two shrubs with differing defenses: Eriodictyon crassifolium has hairy leaves, whereas E. trichocalyx has resinous leaves. We tested whether these beetles have differentiated onto the two host plants, and if not, whether the beetles prefer the better host plant and prefer mates who are from that host plant. In feeding tests, adult beetles strongly preferred eating E. trichocalyx regardless of which host they came from. In addition, females laid more eggs if they ate E. trichocalyx than E. crassifolium. So, E. trichocalyx is generally the better host. However, beetle mate preference was not in line with food choice. Males did not prefer to mate with females from E. trichocalyx. Females from E. crassifolium did prefer males from E. trichocalyx over males from E. crassifolium, but did not lay more eggs as a result of these matings. We conclude that the beetle populations we studied have not differentiated based on their host plants and may not have even adapted to the better host. Although to humans these host plant defenses differ dramatically, signs that they have caused evolution in the beetles are lacking. The case of T. eriodictyonis stands counter to many other studies that have seen the differentiation of ecotypes and/or adaptive coordination of an herbivore's life cycle based on host plant differences.  相似文献   

12.
Rhizosphere microbes affect plant performance, including plant resistance against insect herbivores; yet, a direct comparison of the relative influence of rhizosphere microbes versus plant genetics on herbivory levels and on metabolites related to defence is lacking. In the crucifer Boechera stricta, we tested the effects of rhizosphere microbes and plant population on herbivore resistance, the primary metabolome, and select secondary metabolites. Plant populations differed significantly in the concentrations of six glucosinolates (GLS), secondary metabolites known to provide herbivore resistance in the Brassicaceae. The population with lower GLS levels experienced ~60% higher levels of aphid (Myzus persicae) attack; no association was observed between GLS and damage by a second herbivore, flea beetles (Phyllotreta cruciferae). Rhizosphere microbiome (disrupted vs. intact native microbiome) had no effect on plant GLS concentrations. However, aphid number and flea beetle damage were respectively about three‐ and seven‐fold higher among plants grown in the disrupted versus intact native microbiome treatment. These differences may be attributable to shifts in primary metabolic pathways previously implicated in host defence against herbivores, including increases in pentose and glucoronate interconversion among plants grown with an intact microbiome. Furthermore, native microbiomes with distinct community composition (as estimated from 16s rRNA amplicon sequencing) differed two‐fold in their effect on host plant susceptibility to aphids. The findings suggest that rhizosphere microbes, including distinct native microbiomes, can play a greater role than population in defence against insect herbivores, and act through metabolic mechanisms independent of population.  相似文献   

13.
Natural enemies attracted to plants may provide those plants with protection against herbivores but may also protect neighbouring plants, that is through associational resistance. Ant attendance may be an important mechanism for the occurrence of such effects because ants can reduce the damage caused by a wide variety of herbivorous insects. Ants have been shown, in a previous field experiment, to decrease the damage caused by the pine weevil, Hylobius abietis (L.) (Coleoptera: Curculionidae), a pest species that causes high seedling mortality in forest regeneration areas. In this study, we specifically tested whether seedlings planted close to ant‐attended seedlings experience associational resistance. We did this under laboratory conditions using the ant species Lasius niger (L.) (Hymenoptera: Formicidae). The feeding damage by pine weevils was significantly reduced on seedlings attended by ants. The neighbouring seedlings, however, did not experience associational resistance. Nevertheless, some associational effects were observed as the number of weevils recorded on both ant‐attended and neighbouring seedlings was significantly lower compared with ant‐excluded seedlings.  相似文献   

14.
The susceptibility of plants to herbivores can be strongly influenced by the identity, morphology and palatability of neighboring plants. While the defensive traits of neighbors often determine the mechanism and strength of associational resistance and susceptibility, the effect of neighbors on plant defense phenotype remains poorly understood. We used field surveys and a prickle‐removal experiment in a semi‐arid Kenyan savanna to evaluate the efficacy of physical defenses against large mammalian herbivores in a common understory plant, Solanum campylacanthum. We then quantified the respective effects of spinescent Acacia trees and short‐statured grasses on browsing damage and prickle density in S. campylacanthum. We paired measurements of prickle density beneath and outside tree canopies with long‐term herbivore‐exclusion experiments to evaluate whether associational resistance reduced defense investment by decreasing browsing damage. Likewise, we compared defense phenotype within and outside pre‐existing and experimentally created clearings to determine whether grass neighbors increased defense investment via associational susceptibility. Removing prickles increased the frequency of browsing by ~25%, and surveys of herbivory damage on defended leaves suggested that herbivores tended to avoid prickles. As predicted, associational resistance and susceptibility had opposing effects on plant phenotype: individuals growing beneath Acacia canopies (or, analogously, within large‐herbivore exclosures) had a significantly lower proportion of their leaves browsed and produced ~ 70–80% fewer prickles than those outside refuges, whereas plants in grass‐dominated clearings were more heavily browsed and produced nearly twice as many prickles as plants outside clearings. Our results demonstrate that associational resistance and susceptibility have strong, but opposing, effects on plant defense phenotype, and that variable herbivore damage is a major source of intraspecific variation in defense phenotype in this system.  相似文献   

15.
Abstract 1. Water stress may increase or reduce the suitability of plants for herbivores. The recently proposed ‘pulsed stress hypothesis’ suggests consideration of stress phenology (pulsed vs. continuous stress) to explain these conflicting effects of plant water stress on herbivore performance. 2. This hypothesis was tested for the effect of differing stress intensity on performance and preference of insect herbivores belonging to different feeding guilds, namely leaf‐chewing insects (Spodoptera littoralis caterpillars) and phloem‐feeding insects (Aphis pomi aphids), on apple plants (Malus domestica). The plants were non‐stressed or exposed to a low or high intensity of pulsed water stress. 3. Plant responses to the different stress levels were generally monotonic. Growth, stomatal conductance (gs), leaf water, and old‐leaf nitrogen concentration decreased, whereas young‐leaf nitrogen concentration and leaf mass per area (LMA) increased with increasing stress intensity. The stable isotope composition of foliar carbon (δ13C) responded non‐monotonically to the drought treatments. The δ13C values were highest in low‐stress plants, intermediate in high‐stress plants, and lowest in non‐stressed plants. 4. The preference and performance responses of the caterpillars were also non‐monotonic. Non‐stressed plants were intermediately, low‐stress plants least, and high‐stress plants most attractive or suitable. Aphid population growth was highest on non‐stressed plants and lowest on low‐stress plants. 5. The results highlight the importance of water stress intensity for the outcome of interactions between herbivores and drought‐affected plants. They show that pulsed water stress may enhance or reduce insect herbivore performance and plant resistance, depending on stress intensity.  相似文献   

16.
Abstract.  1. Plants respond to herbivore damage by inducing defences that can affect the abundance of herbivores and predators. These tritrophic interactions may be influenced by heterogeneity in plant neighbourhood.
2. In the present study, the effects of induced responses on the abundance of herbivores (flea beetles and aphids), omnivores (pirate bugs and thrips), and predators (lady beetles and spiders) on individual plants and their neighbours between and within patches composed of three tomato plants was investigated.
3. Herbivore damage was manipulated to create homogeneous patches where either all or none of the plants had defences induced by herbivore damage, and heterogeneous patches where only one of the plants was induced.
4. Arthropod abundance on plants at different scales was compared by testing between patch effects (patch level), for neighbourhood effects at the plant phenotype level (neighbourhood level), and between near and far plants (within patch position).
5. At the patch level , plants in homogeneously induced patches contained fewer flea beetles and pirate bugs, but more lady beetles, compared with homogeneously non-induced patches. There was no effect of patch type on the abundance of aphids, thrips, and spiders on plants.
6. At the neighbourhood level , induced plants in heterogeneous patches contained more flea beetles and pirate bugs compared with induced plants in homogeneous patches, indicating that the abundance of some herbivores and omnivores on induced plants varied depending on the phenotype of the other plants within the patch. Within patch position, there was no evidence that the abundance of herbivores or predators on non-induced plants was affected by proximity to an induced plant.
7. Therefore, variation in plant neighbourhood generated by induced plant responses affected the abundance of three arthropods from three feeding guilds.  相似文献   

17.
The strength of plant‐herbivore interactions varies spatially and through plant ontogeny, which may result in variable selection on plant defense, both among populations and life‐history stages. To test whether populations have diverged in herbivore resistance at an early plant stage, we quantified oviposition preference and larval feeding by Plutella xylostella (L.) (Lepidoptera: Plutellidae) on young (5–6 weeks old) Arabidopsis lyrata (L.) O'Kane & Al‐Shehbaz (Brassicaceae) plants, originating from 12 natural populations, six from Sweden and six from Norway. Arabidopsis lyrata can be trichome‐producing or glabrous, with glabrous plants usually receiving more damage from insect herbivores in natural populations. We used the six populations polymorphic for trichome production to test whether resistance against P. xylostella differs between the glabrous and the trichome‐producing morph among young plants. There was considerable variation among populations in the number of eggs received and the proportion of leaf area consumed by P. xylostella, but not between regions (Sweden vs. Norway) or trichome morphs. Rosette size explained a significant portion of the variation in oviposition and larval feeding. The results demonstrate that among‐population variation in resistance to insect herbivory can be detected among very young individuals of the perennial herb A. lyrata. They further suggest that trichome densities are too low at this plant developmental stage to contribute to resistance, and that the observed among‐population variation in resistance is related to differences in other plant traits.  相似文献   

18.
Abstract 1. Several studies have shown that above‐ and belowground insects can interact by influencing each others growth, development, and survival when they feed on the same host‐plant. In natural systems, however, insects can make choices on which plants to oviposit and feed. A field experiment was carried out to determine if root‐feeding insects can influence feeding and oviposition preferences and decisions of naturally colonising foliar‐feeding insects. 2. Using the wild cruciferous plant Brassica nigra and larvae of the cabbage root fly Delia radicum as the belowground root‐feeding insect, naturally colonising populations of foliar‐feeding insects were monitored over the course of a summer season. 3. Groups of root‐infested and root‐uninfested B. nigra plants were placed in a meadow during June, July, and August of 2006 for periods of 3 days. The root‐infested and the root‐uninfested plants were either dispersed evenly or placed in clusters. Once daily, all leaves of each plant were carefully inspected and insects were removed and collected for identification. 4. The flea beetles Phyllotreta spp. and the aphid Brevicoryne brassicae were significantly more abundant on root‐uninfested (control) than on root‐infested plants. However, for B. brassicae this was only apparent when the plants were placed in clusters. Host‐plant selection by the generalist aphid M. persicae and oviposition preference by the specialist butterfly P. rapae, however, were not significantly influenced by root herbivory. 5. The results of this study show that the presence of root‐feeding insects can affect feeding and oviposition preferences of foliar‐feeding insects, even under natural conditions where many other interactions occur simultaneously. The results suggest that root‐feeding insects play a role in the structuring of aboveground communities of insects, but these effects depend on the insect species as well as on the spatial distribution of the root‐feeding insects.  相似文献   

19.
Co‐evolution between herbivores and plants is believed to be one of the processes creating Earth’s biodiversity. However, it is difficult to disentangle to what extent diversification is really driven by herbivores or by other historical‐geographical processes like allopatric isolation. In the cruciferous plant Barbarea vulgaris, some Danish individuals are resistant to herbivory by flea beetles (Phyllotreta nemorum), whereas others are not. The flea beetles are, in parallel, either resistant or susceptible to the plants defenses. To understand the historical‐evolutionary framework of these interactions, we tested how genetically divergent resistant and susceptible plants are, using microsatellite markers. To test whether they are reproductively fully compatible, resistant and susceptible plants were grown intermixed in an outdoor experiment, and the paternity of open‐pollinated offspring was determined by analysis of molecular markers. Resistant and susceptible Danish plants were genetically strongly differentiated and produced significantly fewer hybrids than expected from random mating or nearest neighbour mating. Our results suggest that the two types belong to different evolutionary lineages that have been (partly) isolated at some time, during which genetic and reproductive divergence evolved. A parsimonious scenario could be that the two plant types were isolated in different refugia during the previous ice age, from which they migrated into and met in Denmark and possibly neighbouring regions. If so, resistance and susceptibility has for unknown reasons become associated with the different evolutionary lineages.  相似文献   

20.
Two morphological variants of Terminalia alata (Combretaceae) differed in leaf flushing phenology and spatial distribution in a Cambodian deciduous forest. The hairy‐type trees displayed leaf exchange behavior in the middle of the dry season. The glabrous type flushed new leaves 3 months after the wet season started. The leafless period of the hairy type was estimated to be <1 month, whereas that of the glabrous type lasted more than 5 months. The landscape‐scale leaf exchange behavior was similar to that of the hairy type. The two types showed clear spatial separation. The hairy type was limited to flat areas with deep soils. The dominance of the glabrous type in hilly areas with shallow soils suggests that it is adapted to water‐limited environments. The abundance of the glabrous type in hilly areas and its unique leaf phenology probably influence the carbon, energy and water balance at the landscape level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号